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1. Introduction

Since the early works on marketgames by Shubik (1973),
Shapley and Shubik (1977) and Postlewaite and Schmeidler (1978),
a large literature has studied the non-cooperative foundations
of Walrasian equilibrium. More recently, the development of
the theory of strategic bargaining, pioneered by Stahl (1972)
and Rubinstein (1982), has motivated the investigation of the
foundations of the competitive equilibrium within the context of
strategic bargaining games1: Rather than positing abstract price
mechanisms or fictitious auctioneers that deliver the market
equilibrium, strategic bargaining games provide a more natural
representation of the agents’ interaction. More importantly,
bargaining games are also more suitable to model economies in
which trade is decentralized.2 The central idea explored by the
existing literature is that the competitive outcome should emerge
in economies with a large number of agents: For this reason, most
works studied economies with an infinite number of agents.3 The
important task of extending the argument to finite economies,
possibly letting the number of agents grow large, has proved
difficult: Only recently did Gale and Sabourian (2005) provide
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1 See Osborne and Rubinstein (1990) for a survey of this literature.
2 See e.g. Rubinstein and Wolinsky (1985, 1990) and Gale (1986a,b, 1987).
3 The works by Gale (1986a,b) are the classic reference. See also McLennan and
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strategic bargaining foundations to the competitive hypothesis in
the context of a single-good (or Marshallian) economy.4

To the best of my knowledge, only two contributions have
studied strategic bargaining foundations for finite Walrasian
economies: Yildiz (2005) and Dàvila and Eeckhout (2008) con-
sider pure exchange economies with two agents and an arbi-
trary number of goods. Analyzing different bargaining procedures,
they both provide a particularly striking result: The equilibria of
their games yield Walrasian outcomes as the two players become
infinitely patient. In Yildiz (2005) it is shown that a bargaining
procedure à la Rubinstein, in which agents make alternating pro-
posals of allocations, yields non-Walrasian outcomes. In contrast,
a bargaining procedure in which proposals consist of price vectors
can implement Walrasian outcomes. Dàvila and Eeckhout (2008)
proved Yildiz’s conditions to be generically violated in the space of
economies; they recovered the competitive result adopting a dif-
ferent bargaining procedure: The two players make alternating of-
fers of prices and a maximum trading constraint; if the responder
agrees, he can demand any trade consistent with the constraints
he has agreed upon.5

In the economies considered by Yildiz (2005) and Dàvila and
Eeckhout (2008), the only possible pairwisemeeting also coincides
with the grand-coalition of the economy itself. Clearly, this is a
special feature of the two-agent case, and it is not clear whether
and how their results extend to economies with an arbitrary
number of agents. The combined results of Yildiz (2005) and
Dàvila and Eeckhout (2008) also point out the sensitivity of

4 For a thorough account of the literature, and a discussion of the issues raised by
the finite number of agents, see Gale (2000).
5 The importance of maximum trading constraints for the case of axiomatic

bargaining was analyzed by Binmore (1987) first.
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the competitive outcome to the specification of the bargaining
process. This observation motivates further questions concerning
the robustness of the results to different specifications of the
bargaining protocol.

This paper generalizes Dàvila and Eeckhout’s (2008) results to
economies with an arbitrary number of agents and to different
bargaining processes: It is proved that, as the bargaining frictions
vanish, the ‘‘stationary subgame perfect equilibria’’ of a class of
bargaining games implement Walrasian allocations in economies
with an arbitrary number of agents and commodities. The class
of games under consideration encompasses all the bargaining
procedures of alternating offers in which the proposer announces
prices and maximum trading constraints, in which responses are
sequential, trade occurs upon unanimous acceptance, and the
continuation game in case of rejection does not depend on the
actions previously taken by the players. If an agreement is reached,
the proposer acts as the residual claimant of a centralized market:
Responders simultaneously choose their demands, subject to the
budget and maximum trading constraints, and the market is
cleared by the proposer at the announced prices.6

Thus, provided that offers are made of prices and maximum
trading constraints, the competitive result is robust to details of
the bargaining process such as differences in players’ discount
factors and the process according towhich the proposer is selected.
Also, the argument does not require a large economy, or an
approximation of it such as a replica economy: The competitive
result holds for any number of agents. This suggests that the details
of the bargaining process may play a crucial role in determining
the competitive outcome, independent of the role played by
the number of agents, which has been the main focus of the
literature on non-cooperative bargaining foundations ofWalrasian
equilibrium.

The rest of the paper is organized as follows: Section 2
introduces the economy, and the basic notation; Section 3 contains
the description of the class of bargaining games and discusses the
solution concept. Section 4 contains the analysis and main results
of the paper. Section 5 concludes.

2. The economy

A pure exchange economy is defined as a tuple E = ⟨I, r,
(Xi, ei, ui)i∈I⟩ : I = {1, . . . , n} is the set of agents, indexed by i ∈

I; r ∈ RC
++

denotes the total endowments of the C commodities in
the economy. For each agent i, preferences are described by a utility
function ui : RC

→ R. Agent i’s consumption possibility set is
Xi ⊆ RC

+
. Each agent is endowedwith a bundle of goods ei ∈ Xi such

that ∀i, 0 ≪ ei ≪ r and
∑

i∈I ei = r .7 We assume, without loss of
generality, that ui (ei) = 0 for all i.8 Allocations are denoted by
x = (xi)i∈I ∈ RnC

+
, where for each i, xi =


x1i , . . . , x

C
i


∈ RC

+
is

the consumption bundle of agent i. An allocation (xi)i∈I is feasible
if
∑

i∈I xi = r and xi ∈ Xi for each i. X denotes the set of feasible
allocations:

X =


x ∈ RnC

: xi ∈ Xi for all i, and
−
i∈I

xi = r


.

Prices are denoted by p ∈ RC
++

. The set of Pareto Efficient
Allocations is denoted by XPE:
XPE

:=

x ∈ X : @x′

∈ X such that

ui

x′

i


i∈I > (ui (xi))i∈I


.

6 Some alternative specifications are considered in Section 5.
7 The notation adopted for vector inequalities is as follows: ‘‘≪’’ represents a

strict inequality for all components; ‘‘ <’’ allows equality for some component, but
not all; ‘‘≤’’ means ‘‘<’’ or ‘‘=’’.
8 This normalization is done so that the disagreement outcome, set to zero in

Section 3, is payoff equivalent to the autarchy consumption.
Definition 1. The set ofWalrasian Allocations of an economy E, X∗,
is a subset of X satisfying: ∀x ∈ X∗, ∃p ∈ RC

++
s.t. for each i ∈ I ,

xi ∈ argmax
yi∈Xi

ui (yi) (P.1)

s.t. p (yi − ei) ≤ 0.

3. The bargaining game

In this section the bargaining procedure in Dàvila and Eeckhout
(2008) is adapted to the case of an economy with an arbitrary
number of agents, and is generalized to a wide class of bargaining
processes.
Bargaining process. A bargaining process for economy E is defined
by a tuple S = (S, σ , π) such that: S is a finite state space; σ is
a homogeneous Markov chain taking values in S, with particular
realizations (σ0, σ1, . . .) ; π : S → P (I) is a function mapping
from the set of states, S, to the set of permutations on I, P (I). For
each s ∈ S, π (s) = (π1 (s) , . . . , πn (s)) identifies the order in
which agents move in state s. We refer to the agent π1 (s) ≡ a (s)
as the auctioneer in state s; the other agents are the traders. The
selected auctioneer a (s) ∈ I announces a price vector p, and a
vector q =


qj

j≠a(s) ∈ RC(n−1), where qj represents player j’s

maximum excess demand (hereafter, we will refer to qj as j’s
maximum trading constraint, MTC). The remaining agents j ∈ I \

{a(s)} play sequentially, π2 (s) moving first, and so on, until πn (s):
They may either accept (action ‘‘Y ’’) or reject (action ‘‘N ’’). If
everybody accepts, trade can take place in the centralized market
at the price p announced by the auctioneer, subject to the traders’
MTCs


qj

j≠a(s): Traders simultaneously choose excess demands

zj

j≠a(t) s.t. zj ∈ Bj


p, qj


, where

Bj

p, qj


:=

z ∈ RC

: z ≤ qj and pz ≤ 0

. (1)

The aggregate excess demand
∑

j≠a(s) zj is cleared by the
auctioneer, acting as the residual claimant of the market. For
the game to be well-defined, the auctioneer must be capable
of clearing all the individual demands consistent with the
individual budget constraints. To this purpose, a restriction on the
auctioneers’ announcements is imposed: ∀s,

∑
j≠a(s) qj ≤ ea(s).

That is, the auctioneer must be able to clear the maximum number
of quantities that are allowed to be traded. After trade has taken
place, agents leave the market and consume the bundle of goods
they own.

If any player rejects, no trade occurs and the system moves to
the next period according to the process σ .

The definition of the set of histories and of players’ strategies is
straightforward but notationally cumbersome, and so is omitted.
Strategy profiles are denoted by f = (f1, . . . , fn) , fi being i’s
strategy and f−i his opponents’.
Payoffs. Agents discount time: for each i ∈ I , let δi ∈ (0, 1) denote
agent i’s discount factor, and δ = (δ1, . . . , δn) denote the profile
of discount factors. The payoff in case of perpetual disagreement
is assumed to be zero. If agreement occurs at period t and agent i
holds bundle xi after trade, he consumes it and derives a utility of
ui (xi). Player i’s payoff for this outcome is therefore δt

i ui (xi).
Bargaining game. For given economy E and bargaining process S,
let Γ (δ) denote the game described above with players’ discount
factors δ ∈ (0, 1)n. Similarly, Γ (1) denotes the game induced by
E and S when players are infinitely patient.

The setup above leaves a lot of freedom to the specification
of S and σ , and therefore a large class of bargaining processes
are consistent with the present framework. The maintained
assumptions used for the main result will be discussed in
Section 4. For now, notice that the framework introduced thus
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far encompasses all the bargaining procedures that use price-
posting and maximum trading constraints, in which trade occurs
upon unanimous acceptance, responses are sequential, and the
continuation game in case of rejection does not depend on the
actions previously taken by the players. It includes, for example,
deterministic processes of alternating offers, with each agent
making the offer an arbitrary number of consecutive periods; or
a game in which at every period, each player is equally likely
to occupy any positions in the order of moves, and so on. The
only important restriction is that the transition probabilities only
depend on the current state, not on the previous history or on the
players’ actions (e.g. the identity of who has rejected).

3.1. Solution concept

The solution concept adopted here, Stationary Subgame Perfect
Equilibrium (SSP), is a selection from the SubgamePerfect Equilibria
which imposes the additional restriction that equilibrium strate-
gies must be stationary, i.e. the continuation after any history of
length t is completely determined by the realized state σt .9

Definition 2. A strategy profile f is a Stationary Subgame Perfect
Equilibrium (SSP) if it is a Subgame Perfect Equilibrium and if fi is
stationary for each i.

In a SSP, in each period, players’ behavior only conditions on
the current state and the moves previously made in that period.
Note in particular that stationarity does not require a player as
auctioneer to always make the same offer. That is, player i always
makes the sameofferwhen selected as the auctioneer in state s, but
not necessarily the same offer at two states s, s′ such that a (s) =

a

s′


= i. Similarly, for each s, πk (s)’s response after a particular
sequence of responses of agents πl (s) , l = 2, . . . , k − 1 is always
the same; but this does not mean that agents always respond in
the same way to agent i’s proposal: For instance, suppose that
there exist two (distinct) states s and s′ at which i is the auctioneer
and j the first respondent (i.e. a (s) = a


s′


= i and π2 (s) =

π2

s′


= j), and suppose that i’s strategy is such that i makes the
same offer (p, q) at s and s′. The stationarity restriction does not
rule out the possibility that j accepts (p, q) at s but not at s′. Similar
freedom is left by the stationarity assumption to the behavior of
later respondents.

4. Maintained assumptions and results

The main result is based on two sets of assumptions,
respectively on the economy E and the bargaining process S.
Maintained assumptions on E : For each i, Xi ⊆ RC

+
is convex and ui

satisfies the following:

• (E.1): ui is differentiably strictly increasing.
• (E.2): ui is differentiably strictly quasi-concave on an open set

Gi ⊇ Xi.
• (E.3): {xi ∈ Gi : ui (xi) ≥ ui (ei)} ∩ bd (Xi) = ∅.
• (E.4): ui is strongly concave, in the sense that

det


2D2ui (x) +


n−

k=1

Dikjui (xi)

xk − ei,k


ij


does not change sign.

Assumptions (E.1-3) are standard in general equilibrium
theory, and are imposed to guarantee a well-behaved pure-
exchange economy: (E.1-2) are the standard assumptions for the

9 Hence, for f to be an equilibrium, it must be immune to all possible unilateral
deviations, stationary and non-stationary.
differentiable versions of the welfare theorems10; (E.3) requires
that the upper contour sets of the initial endowments do not
intersect the boundaries of the consumption sets. For p ∈ RC

++
,

assumptions (E.3) allows to dispense with the compactness of Xi
(or with the assumption Xi = RC

+
): Under (E.3), for p ∈ RC

++
,

the optimization problem (P.1) has a solution. (E.3) also rules out
corner solutions and guarantees that equilibrium allocations do
not lie on the boundary of the set of feasible allocations (i.e. X∗

⊆

int X). Assumptions (E.1-3) together also imply that the set of
Pareto efficient allocations coincides with the set of ‘‘pairwise
efficient’’ allocations, that is the set of allocations for which no
pair of agents can induce a Pareto improvement through bilateral
exchange (Proposition 1, p. 47 Gale, 2000).

Assumption (E.4) was introduced by Dàvila and Eeckhout
(2008), and is needed for the analysis of the bargaining game. It
guarantees that the offer curves have no inflexion points, and it is
satisfied whenever the substitution effect dominates the income
effect. As in Dàvila and Eeckhout (2008), assumption (E.4) will be
used to prove that agreement in the bargaining game occurs with
no delay (Proposition 1).
Maintained assumptions on S:

• (S.1): S is a finite set of states.
• (S.2): For each i ∈ I, ∃s ∈ S : a (s) = i;
• (S.3): every state s ∈ S communicates with every other state

s′ ∈ S.

Assumption (S.1) will be used to prove existence of SSP in
the game with discounting (Proposition 1). Assumptions (S.2-3)
together imply that, from any initial condition, each agent is
selected as the auctioneer in finite time with probability one. This
imposes a lower bound on the bargaining power of each agent.
No restrictions are imposed on the relative frequency with which
agents are selected as proposers.

4.1. Main result

In this section it will be proved that, under the maintained
assumptions (E.1-4) and (S.1-3), the SSP outcomesofΓ (δ) converge
to Walrasian allocations as δ → 1.

The basic strategy of the proof parallels its counterpart in Dàvila
and Eeckhout (2008), adapting it to the general class of bargaining
protocols considered here. The argument of the proof proceeds as
follows: first, it is shown that if all players are impatient (δ ≪ 1),
an SSP exists and all SSP are with immediate acceptance, i.e. such
that agreement occurs at all states (Proposition 1); second, it is
proved that the correspondence of the SSP of the game is upper
hemicontinuous in δ on (0, 1]n (Proposition 2): hence, if SSP are
with immediate acceptance for δ ≪ 1, also their limits are SSP
with immediate acceptance at δ = 1; Finally, it is shown that at
δ = 1, all the SSP with immediate acceptance induce Walrasian
allocations (Proposition 3), thus completing the proof of the main
result (Proposition 4).

4.1.1. Proof of the main result
Consider the utility possibility set of the economy, defined as

U :=

v ∈ Rn

: ∃x ∈ X s.t. u (x) = v

.

Each strategy profile f induces an outcome of the bargaining game,
defined by a pair


τ f , ηf


, where τ f is a stopping time and ηf is a

random variable taking values in U. The stopping time τ f denotes
the time at which agreement occurs, while ηf denotes the utilities

10 (E.2) is often strengthened to requiring differentiable strict quasi-concavity on
all RC (see for instance Mas-Colell et al. (1995), Section 16.F).
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agents derive from the consumption bundles they own at that
period: Notice that because of the underlying stochastic process
σ ,

τ f , ηf


are in general non-degenerate random variables, even

if f is a profile of pure strategies. The dependence of the outcome
on the strategy profile will be suppressed, and the outcome simply
denoted by (τ , η), when its meaning is clear from the context.

For any pair (τ , η), and for each state s,

E [δτη|σ0 = s] =

E

δτ
i ηi|σ0 = s


i∈I

is the profile of expected utilities of the outcome (τ , η) when the
initial state is s.

An outcome (τ , η) is stationary if there exists a measurable
subset S∗

⊆ S and a measurable function ξ : S∗
→ X such that:

(i) σt ∉ S∗ for all t = 0, 1, . . . , τ − 1; (ii) στ ∈ S∗; (iii) η =

u (ξ (στ )). In words, a stationary outcome can be characterized by a
pair (ξ , S∗) such that S∗

⊆ S is the set of states inwhich agreement
occurs, and the function ξ delivers the resulting allocation at each
state. Using the latter condition, for any strategy profile f that
induces a stationary outcome, wemay define the value function of
f at state s, vf (s) = E [δτu (ξ (στ )) |σ0 = s]. Clearly, an SSP must
induce a stationary outcome. Hence, the subsequent analysis will
focus on stationary outcomes only.

The next definition introduces SSPs with no delay:

Definition 3. An SSP with immediate acceptance (or with no delay)
is an SSP in which agreement occurs in all states. Formally: f is an
SSP with immediate acceptance if it induces a stationary outcome
(ξ , S∗) s.t. S∗

= S.

An SSP with immediate acceptance can be characterized by a
tuple (ps, qs)s∈S , where for each s, (ps, qs) is the offer made by a (s)
in state s. Traders j ≠ a (s) accept and choose consumption bundles
xj (ps, qs) such that:

xj

ps, qs


∈ argmax

xj∈Xj
uj

xj


(2)

s.t. ps

xj − ej


≤ 0

xj − ej


≤ qsj .

This condition derives from the definition of subgame perfec-
tion: Once an agreement is reached, subgame perfection requires
that each responder solves the optimizationproblemdefined in (2).
By stationarity of strategies, a (s) always offers the same (ps, qs) in
state s in a SSP. Furthermore, under the maintained assumptions
(E.1-2), xj (ps, qs) is uniquely determined for each j and s. Thus, an
SSP with immediate acceptance can be completely characterized by
a tuple (ps, qs)s∈S , which in turn determines a tuple (xs)s∈S of cor-
responding allocations.

Given this observation, in an SSP with immediate acceptance, at
each state s the proposer a (s) optimizes under the constraint that
none of the traders j ≠ a (s) has an incentive to deviate, that is
∀s ∈ S:


ps, qs


∈ argmax

(p,q)
ua(s)


r −

−
j≠a(s)

xj

ps, qs


(3)

s.t.:

uj

xj


≥ δjE

uj

xσ1
j


|σ0 = s


for xj


ps, qs


defined as in (2)


j≠a(s)

.

The first constraint in (3) is a ‘‘no rejection’’ condition, necessary
for responders to accept the offer rather than delaying the
agreement and moving to the next period in state σ1. The second
constraint is simply the subgame perfection condition discussed
above.

It is worth to point out that once an agreement is reached,
players do not face a strategic situation anymore: They are simply
left with the solution of the optimization problem in (2), and they
behave as price takers. The agents’ strategic behavior is confined to
the responses and the offers, i.e. the bargaining process. Once the
latter is over, agents do not behave strategically.11

Since, upon agreement, responders are free to choose any
consumption bundle consistent with the constraints in (2), in any
SSP with immediate acceptance (ps, qs)s∈S the induced allocations
(xs)s∈S must be such that, for each s and j ≠ a (s),

Duj

xsj
 

xsj − ej


≥ 0.

The inequality is strict if the maximum trading constraint qsj is
binding in (2), i.e. if the bundle xj demanded at ps relaxing the
MTC is such that


xj − ej


> qsj . Furthermore, since the proposer

at s chooses the tuple

qsj

j≠a(s)

, conditional on the responders
accepting the offer, a (s) can induce any allocation that satisfies
Du−a(s)


xs
−a(s)

 
xs
−a(s) − e−a(s)


≥ 0 simply making the MTCs

tighter. Hence, an SSP with immediate acceptance can be character-
ized by allocation offers


xsj

j∈I


s∈S

, where

xsj

j∈I

is the allocation

offered by a (s) at s, such that12:

∀s ∈ S :
xsl

l∈I ∈ arg max

(xl)l∈I∈X
ua(s)


xa(s)


(4)

s.t.:

uj

xj


≥ δjE

uj

xσ1
j


|σ0 = s


Duj


xj
 

xj − ej


≥ 0


j≠a(s)

.

Impatient players. In this section it is proved that in all the SSP of the
gamewith impatient players, agreement occurs with no delay, and
that an SSP exists. The analysis is conducted in the space of utilities,
exploiting techniques similar to Merlo and Wilson’s (1995): SSP
payoffs are characterized as the fixed points of a map from a
space of measurable functions to itself. Such measurable functions
represent the utility profiles induced by profiles of stationary
strategies.

Proposition 1. If δ ≪ 1, in any SSP of the game, agreement occurs
with no delay. Furthermore, an SSP exists.

Proof. Consider the utility possibility set of the economy

U :=

v ∈ Rn

: ∃x ∈ X s.t. u (x) = v

.

An outcome (τ , η) is stationary if there exists a measurable
subset S∗

⊆ S and a measurable function µ : Sµ
→ U such that:

(i) σt ∉ Sµ for all t = 0, 1, . . . , τ −1; (ii) στ ∈ Sµ; (iii) η = µ (στ ).
Using the latter condition, for any stationary outcome, we may
define, for all s, vµ (s) = E [δτµ (στ ) |σ0 = s]. Let Vn denote the
set of bounded and measurable functions v : S → Rn.

Lemma 1. If (µ, Sµ) is a stationary outcome, then vµ is the unique
function in Vn such that:

vµ (s) = µ (s) for all s ∈ Sµ, and
vµ (s) = E [δv (σ1) |σ0 = s] for all s ∈ S \ Sµ.

Proof of Lemma 1. Given (µ, Sµ), define V : Vn
→ Vn s.t. ∀v ∈

Vn,

V (v) (s) =


µ (s) if s ∈ Sµ

E [δv (σ1) |σ0 = s] otherwise.

The lemma is established if vµ is the unique solution in Vn to the
fixed-point problem V (v) = v.

11 This is a consequence of the structure of the game, not an assumption on agents’
behavior.
12 Cf. Lemma A1 in Dàvila and Eeckhout (2008).
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Step 1: V (·) is a contraction. Let ‖·‖ denote the supnorm on
Rn, and ‖·‖∞ the supnorm on Vn. Let v, v′

∈ Vn. Then, if s ∈

Sµ,
V (v) (s) − V


v′

(s)
 = 0; if s ∈ S \ Sµ,V (v) (s) − V


v′

(s)
 =

E

δ

v (σ1) − v′ (σ1)


|σ0 = s


≤ β

E

v (σ1) − v′ (σ1)


|σ0 = s


≤ β

v − v′


∞

where β := max {δi : i ∈ I}. Hence, ∃β ∈ (0, 1) : ‖V (v) − V
v′

‖∞ ≤ β

v − v′


∞
. Since Vn is a complete metric space,

Banach’s theorem implies that V (·) has a unique fixed point.
Step 2: V (vµ) = vµ. Define the stopping time for agreement

starting at period t = 1 as τ1, such that: στ1 ∈ Sµ and σt ∉ Sµ for
t = 1, . . . , τ1 − 1. Then, for any s ∈ S,

vµ (s) = E [δτv (στ ) |σ0 = s]
= E


δτ1−1v


στ1


|σ1 = s


.

If s ∈ Sµ, V (vµ) (s) = vµ (s) simply by definition. If σ0 = s ∈

S \ Sµ, then τ = τ1, so:

V (vµ) (s) = E [δv (σ1) |σ0 = s]
= E


δE

δτ1−1v


στ1


|σ1

|σ0 = s


= E


δE

δτ−1v (στ ) |σ1


|σ0 = s


= E [δτv (στ ) |σ0 = s]
= vµ (s) .

This completes the proof of Lemma 1. �

As discussed above, a necessary condition for allocation x to be
an SSP outcome is that Duj


xj
 

xj − ej


≥ 0 for each j. Hence, for
the analysis of SSP payoffs we can restrict attention to the utility
space

U∗
:=

v ∈ Rn

: ∃x ∈ X s.t. u (x) = v and Du (x) [x − e] ≥ 0

.

Any SSP determines a stationary outcome (τ , η) with η taking
values inU∗. Under assumptions (E.1-4) the setU∗ is compact and
strictly convex, and 0 ∈ U∗. Hence, for any (τ , η) such that the
image of η lies in U∗, it must be E [δτη|σ0 = s] ∈ U∗ for all s.

Let W be the set of measurable functions w : S → U∗. For each
agent i, define the function ϕ∗

i : Rn
→ R such that, for all d ∈ Rn,

ϕ∗

i (d) :=


0 if @v ∈ U∗

: v−i ≥ d−i
max


vi : v ∈ U∗, and v−i ≥ d−i


otherwise.

Under the maintained assumptions (E.1-3), function ϕ∗

i is well
defined and continuous for each i.

Define the operator E : W → W such that for w ∈ W ,

Ei (w) (s) =

max

ϕ∗

i (E [δw (σ1) |σ0 = s]) ;

E [δiwi (σ1) |σ0 = s]} if i = a (s)
E [δiwi (σ1) |σ0 = s] otherwise.

Clearly, E is a continuous map.

Lemma 2. v∗ is a SSP payoff if and only if E (v∗) = v∗.

Proof of Lemma 2. (⇒) Let v∗ be a SSP payoff. Fix s ∈ S and let
i = a (s). If agreement does not occur at s, it must be v∗ (s) =

E [δv∗ (σ1) |σ0 = s]. Now, consider an alternative proposal v ∈ U∗

at some s. If vj < E [δv∗ (σ1) |σ0 = s] for some j, the proposal
is rejected; if vj ≥ E


δjv

∗

j (σ1) |σ0 = s

for all j, proposal v is

accepted in a SSP. Hence, a payoff maximizing proposer would
obtainϕ∗

i (E [δv∗ (σ1) |σ0 = s]) from any proposal that is accepted.
Since i can always induce a rejection, for agreement to occur itmust
be ϕ∗

i (E [δv∗ (σ1) |σ0 = s]) ≥ E [δivi (σ1) |σ0 = s]. In other words,
if v∗ is a SSP payoff, it satisfies

v∗ (s) =


E

δv∗ (σ1) |σ0 = s


if s ∈ S \ Sµ

max

ϕ∗

a(s)


E

δv∗ (σ1) |σ0 = s


;

E

δa(s)v

∗

a(s) (σ1) |σ0 = s


,

E

δ−a(s)v

∗

−a(s) (σ1) |σ0 = s


if s ∈ Sµ

which clearly satisfies E (v∗) = v∗.
(⇐) From the one-shot deviation principle and the stationarity

of equilibrium strategies, any deviation that induces a rejection
when an acceptance is due would yield the continuation payoff.
From the definition of E, in a fixed point the continuation is never
strictly greater than the value at any given s. Hence, a fixed point of
E can be sustained by a SSP of the game. This proves the lemma. �

Remark 1. By construction, if v∗ is a fixed point of E, then v∗
∈

bd (U∗).

We can nowprove the first part of Proposition 1: From the strict
convexity ofU∗, if δ ≪ 1, for any outcome (τ , η) , E [δτη|σ0 = s] ∈

U∗ for all s. Let v∗ be a SSP payoff, and suppose that there exists
a state s in which agreement is not reached. Then, v∗ (s) = E
[δτη|σ0 = s] ∈ int (U∗). But this is inconsistent with v∗ being a
fixed point of E (Remark 1).

To prove existence, it is sufficient to prove the following:

Lemma 3. ⟨W, ‖·‖∞⟩ is a compact, convex, complete metric space.

Proof of Lemma 3. Convexity: let w, w′
∈ W, w ≠ w′. For α ∈

(0, 1), let wα (s) = αw (s) + (1 − α) w′ (s) for all s. Since U∗ is
convex, clearly wα

: S → U∗. It is clearly measurable, hence
wα

∈ W .
Compactness: for any sequence {wν}ν∈N ⊆ W , for each s ∈

S, {wν (s)}ν∈N is a sequence in U∗, hence with a limit w̄ (s) ∈ U∗.
Hence, {wν}ν∈N → w̄ pointwise. Hence in the supnorm.

Completeness: Since it is a compact subset of a complete metric
space, it is also complete. �

Since E : W → W is continuous and ⟨W, ‖·‖∞⟩ is a non-empty,
compact, convex, subset of a linear metric space, the existence of
a fixed point follows from Schauder’s Theorem. This completes the
proof of Proposition 1. �

The convergence result. From Proposition 1, if players discount,
in any SSP an agreement is reached at any state with no delay.
Therefore, the SSP outcomes can be represented by measurable
functions y : S → X , assigning a feasible allocation to each state.
Let Y be the set of such measurable functions. For any initial state
s, y (s) is the allocation induced by the acceptance of a (s)’s offer.
Similar to the above, SSP allocations are fixed points of the operator
ρ : Y → Y , defined as:

ρ (y; δ) (s) = argmax
x∈X

ua(s)

xa(s)


s.t. for all j ≠ a (s) ,

uj

xj


≥ E

δjuj


yj (σ1)


|σ0 = s


Duj


xj
 

xj − ej


≥ 0.

With a slight abuse of notation, let us consider the operator ρ
as a function of δ and define the correspondence Λ : [0, 1]n ⇒ Y
such that

Λ (δ) = {y ∈ Y : y ∈ ρ (y; δ)} .

Λ (δ) is the set of fixed points of ρ, as a function of δ.

Proposition 2. Λ (δ) is an upper hemicontinuous correspondence.

Proof. Since (fromBerge’sMaximumTheorem) ρ is u.h.c. in δ, also
Λ (δ) is u.h.c. (this follows from Lemma A3 in Dàvila and Eeckhout,
2008). �
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Infinitely patient players. From Propositions 1 and 2 we know that
the limit of the SSP, as δ → 1, are with immediate acceptance.
The last step of the analysis is then to prove that all such equilibria
implement Walrasian allocations. To this end, notice that if δ = 1,
under assumptions (S.1-3) the proposer’s problem in (4) can be
rewritten as:
∀s ∈ S :
xsl

l∈I ∈ arg max

(xl)l∈I∈X
ua(s)


xa(s)


(5)

s.t.:


Duij


xj
 

xj − ej


≥ 0

uj

xj


≥ max

uj


xs

′

j


: s′ ∈ S


j≠a(s)

The reason is that under (S.1-3), from any state s, any state s′ is
reached in finite time with probability one. With infinitely patient
players then the incentive compatibility constraint is that above
because a player would reject as long as the utility he obtains in
state s is lower than what he would obtain in any other state.

Proposition 3. If δi = 1 for every i ∈ I , the outcome

x∗

l


l∈I of an

SSP with immediate acceptance is a Walrasian allocation.

Proof. The proof is completed by the following lemmata.

Lemma 4. If δ = 1, in a SSP with immediate acceptance

xsl

l∈I =

x∗

l


l∈I for all s ∈ S.

Proof of Lemma 4. Suppose, bymeans of contradiction, that there
exist s ≠ s′ such that


xsl

l∈I ≠


xs

′

l


l∈I

. Notice that for each s,

constraints uj

xj


≥ max

uj


xs

′

j


: s′ ∈ S


must be binding for

every j in equilibrium, which implies that in equilibrium, uj

xsj


=

uj


xs

′

j


for each j ∈ I and all s, s′ ∈ S. From strict convexity of

preferences, if uj

xsj


= uj


xs

′

j


and xsj ≠ xs

′

j ,

xsl

l∈I is inefficient,

hence (by assumptions (E.1-3)) pairwise inefficient. Since

xsl

l∈I

is an SSP-outcome, it satisfies Dul

xsl
 

xsl − el


≥ 0 for all l.
Inefficiency then implies that Duj


xsj
 

xsj − ej


> 0. Continuity of
Duj (·) (assumption (E.2)) and the pairwise inefficiency of


xsl

l∈I

then imply that for some k ≠ j, there exists a transfer z from j to k
such that Duj


xsj − z

 
xsj − z − ej


≥ 0 and

uk

xsk + z


> uk


xsk


uj

xsj − z


≥ uj


xsj

.

Then, if k = a (s), (i.e. k is making the offer at s), inducing the
responders to accept


xsi

i≠k,j ,


xsj + z


, and consuming


xsk + z


wold be a profitable deviation, because


xsk + z


is strictly preferred

to xsk. If k ≠ a (s) (i.e. k is one of the responders), by assumptions
(S.1-3) a state s′ in which a


s′


= kwould be reached in finite time
with probability one. Since there is no discounting, rejecting until
s′ is reached and then make the offer above would be a profitable
deviation for k. Thus,


xsl

l∈I =


x∗

l


l∈I for all s ∈ S. This completes

the proof of Lemma 4. �

Lemma 5. At

x∗

l


l∈I ,Dui


x∗

i

 
x∗

i − ei


= 0 for each i.

Proof of Lemma 5. Given Lemma 4, in a SSP with immediate
acceptance it must be the case that, for each i, and j ≠ k ≠ i ≠

j,

x∗

k


k≠i solves:

x∗

k


k≠i ∈ arg max

(xk)k≠i
ui


r −

−
k≠i

xk



s.t.:

Duk (xk) [xk − ek] ≥ 0

uk (xk) ≥ uk

x∗

i

 
k≠i

.

Now, suppose that J =

j ∈ I : Duj


x∗

j

 
x∗

j − ej


> 0


≠ ∅,
then


x∗

k


k≠i also solves


x∗

k


k≠i ∈ arg max

(xk)k≠i
ui


r −

−
k≠i

xk


s.t. uj


xj


≥ uj

x∗

j


for all j ∈ J

Duk (xk) [xk − ek] ≥ 0
uk (xk) ≥ uk


x∗

i

 
k∉J∪{i}

.

Notice that

x∗

i − ei


=

∑
k≠i ek −

∑
k≠i x

∗

k


and

∑
j∈J [x

∗

j −

ej] =

∑
k∉J ek − x∗

k


. Fix j ∈ J . From efficiency, under (E.1-3),

∀l ≠ j, ∃γjl > 0 : Duj

x∗

j


= γjlDul


x∗

l


. Let γji = min


γjl : l ≠ j


.

Adding up the constraints for j’s optimization problem

0 ≤

−
k≠j

Duk

x∗

k

 
x∗

k − ek


= Duj

x∗

j

 −
k≠j

1
γjk


x∗

k − ek


= Duj

x∗

j

  1
γji


x∗

i − ei

+

−
k≠i,j

1
γjk


x∗

k − ek


= Duj

x∗

j

  1
γji

−
k≠i

ek −

−
k≠i

x∗

k


+

−
k≠i,j

1
γjk


x∗

k − ek


= Duj

x∗

j

  1
γji


ej − x∗

j


+

−
k≠i,j


1
γjk

−
1
γji

 
x∗

k − ek


= Duj

x∗

j

  1
γji


ej − x∗

j


+

−
k∈J\{j,i}


1
γji

−
1
γjk

 
ek − x∗

k


+

−
k∉J∪{i}


1
γjk

−
1
γji

 
x∗

k − ek


=
1
γji

Duj

x∗

j

 
ej − x∗

j


+

−
k∈J\{j,i}


γjk

γji
− 1


Duk


x∗

k

 
ek − x∗

k


+

−
k∉J∪{i}


1 −

γjk

γji


Duk


x∗

k

 
x∗

k − ek


which yields the desired contradiction: The absurd hypothesis
implies that the first term and the first summation are negative,
while the terms in the last summation are all negative by
construction, for γjk

γji
> 1 and Duk


x∗

k

 
x∗

k − ek


≥ 0 for k ∉ J .
This completes the proof of Lemma 5. �

From Lemma 5, it suffices to set p∗
= Du1


x∗

1


, to obtain, for

each i:
x∗

i ∈ argmax
xi

ui (xi)

s.t.: p∗xi = p∗ei.
Hence,


x∗

l


l∈I is aWalrasian allocation, which completes the proof

of Proposition 3. �

Main result. We can now conclude proving the main proposition:

Proposition 4. If the maintained assumptions (E.1-4) and (S.1-3)
are satisfied, the SSP outcomes of Γ (δ) converge to Walrasian
allocations as δ → 1.
Proof. FromProposition 1weknow that if δ ≪ 1, an SSP exists and
all SSP are with immediate acceptance; Proposition 2 implies that
the limits of the SSP as δ → 1 are SSP with immediate acceptance
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of Γ (1); Proposition 3 shows that SSP with immediate acceptance
of Γ (1) induce Walrasian allocations. Hence, combining these
results, the SSP of Γ (δ) converge to Walrasian allocations as δ
→ 1. �

4.2. A converse result

In this section, a converse to Proposition 3 is provided: If agents
are infinitely patient (δ = 1), every Walrasian allocation can be
sustained as the outcome of a SSP with immediate acceptance.

Proposition 5. Let

p∗,


x∗

l


l∈I


be a WE of the economy E . Then,

under the maintained assumptions (E.1-3) and (S.1-3), there is an
SSP with immediate acceptance of Γ (1) with outcome


x∗

l


l∈I .

Proof. Given the WE

p∗,


x∗

l


l∈I


, consider the following station-

ary strategy profile: ∀i ∈ I , whenever imakes a proposal (i.e. for all
s ∈ a−1 (i)) he offers


pi, qi


such that:

• pi = p∗
;

qij

j≠i

are slack, i.e. qij ≥ zj (p∗), where

zj

p∗


= arg max
zj∈RC

uj

ej + zj


s.t.: p∗zj ≤ 0.

• Whenever i is responding, he accepts any offer

p′, q′


such that

ui

xi

p′, q′


≥ ui


x∗

i


.

Clearly, the outcome of this strategy profile, starting from any
subgame, is


x∗

l


l∈I . To check that this strategy is indeed an SSP, we

need to consider all possible unilateral deviations, stationary and
non-stationary.13 Notice that if i deviates at any point of the game,
he may only induce one of the following types of outcomes.
1. Agreement is never reached.
2. At a later stage in the game, i offers


p′, q′


such that

∀j ≠ i, uj

xj

p′, q′


≥ uj


x∗

j


and it is accepted. (That

uj

xj

p′, q′


≥ uj


x∗

j


for each j ≠ i is a necessary

condition for acceptance, given the opponents’ equilibrium
strategy profile.)

3. At a later stage in the game, i accepts the offer

p∗, qj


made by

j ≠ i, which yields the same outcome

x∗

l


l∈I .

None of these cases corresponds to a profitable deviation for
player i: Outcome (1) yields a payoff of 0 = ui (ei) ≤ ui


x∗

i


.

Hence, inducing perpetual disagreement cannot be a profitable
deviation. Consider outcome (2) now: Since


x∗

l


l∈I is efficient,

and uj

xj

p′, q′


≥ uj


x∗

j


for all j ≠ i, it cannot be that

ui


r −

∑
j≠i xj


p′, q′


> ui


x∗

i


. Hence this outcome cannot be

preferred to

x∗

l


l∈I by i. Case (3) induces the same outcome as the

candidate equilibrium, therefore it cannot be a profitable deviation
either. �

Since assumptions (E.1-3) guarantee the existence of a Wal-
rasian equilibrium (WE), the result indirectly proves existence of
SSP for the case δ = 1. (Notice that (E.4) is not needed for Proposi-
tion 5.)

Corollary 1. Under themaintained assumptions (E.1-3) and (S.1-3),
there exists an SSP of Γ (1).

5. Concluding remarks

In this model agents bargain over prices and maximum trading
constraints. If an agreement is reached, trade occurs in a centralized
way. The results of Dàvila and Eeckhout (2008) for two-agent
economies are generalized to economies with an arbitrary (finite)

13 Notice also that with no discounting the one-shot deviation principle does not
apply. Hence all possible deviations must be considered, one-shot or not.
number of agents, and to different bargaining procedures. It is
proved that, as the bargaining frictions vanish, the stationary
subgame perfect equilibria implement Walrasian allocations in
economies with an arbitrary number of agents and commodities.
To the best of my knowledge, this is the first work that provides
strategic bargaining foundations in such general environments.

A remarkable aspect of the result is that it does not require
a large economy, or an approximation of that such as a replica
economy: The result holds for any finite number of agents.
On the role of the bargaining procedure. The role that different
bargaining procedures may play in providing strategic bargaining
foundations of Walrasian equilibrium is a thoroughly unexplored
question: The existing literature in this research agenda has
considered almost exclusively a specific bargaining procedure
(namely, a take-it or leave-it exchange proposal à la Rubinstein),
and has focused mainly on the role played by the number of
agents in the economy.14 The findings of this paper, Yildiz (2005)
and Dàvila and Eeckhout (2008) combined, suggest that a careful
analysis of alternative bargaining protocols may prove fruitful for
this research agenda, and a promising direction for future research.
Centralized vs. decentralized trade. In economies with more than
two agents, trade can be centralized or decentralized. In this paper,
trade is centralized, and it occurs in a one-shot exchange. This
is an obvious limitation of the model, but it allows to focus on
the properties of the bargaining procedure, abstracting from the
complications specific to trade being decentralized.

Gale and Sabourian (2005) obtained the competitive result for
decentralizedMarshallianmarkets (i.e. single-good economies)with
a finite number of agents. In their environment, agents’ gains from
trade can be exhausted in a single pairwise exchange.15 Thus,
from the point of view of each agent, there is only one relevant
exchange. On the contrary, consideringWalrasianmarkets (i.e. with
an arbitrary number of goods), the agents’ gains from trade cannot
in general be exhausted in any given pairwise meeting: Each agent
has to go through a sequence of bilateral exchanges before the
gains from trade are exhausted, and therefore he must also keep
track of the other agents’ sequences of exchanges. For this reason,
decentralized Walrasian markets are significantly more complex
than decentralized Marshallian markets (e.g. Gale and Sabourian,
2005) and than centralized Walrasian markets (as in this paper): In
the latter two, each agent’s trade occurs in a one-shot exchange.

In a companion paper (Penta, 2007) an alternative specification
of themodel is explored, in which agents are randomlymatched in
pairs, and trade occurs through a sequence of bilateral exchanges.
Within each pair, agents adopt a bargaining procedure similar to
that analyzed above. A partial competitive result has been obtained
thus far: If an economy has a sufficiently large number of agents
and the initial allocation is sufficiently close to the Pareto set,
thenWalrasian allocations can be achieved in a decentralized way,
through a sequence of pairwisematchings in which agents bargain
and trade.16

On the robustness result. In this paper the robustness of the
results obtained from the bargaining procedure is also addressed:
The results hold for a class of games that encompasses all the
bargaining procedures of alternating offers in which the proposer

14 See for instance Gale (2000) and references therein. Also, Gale and Sabourian
(2005).
15 This property also holds in the related papers of Rubinstein andWolinsky (1985,
1990), Gale (1987) and Sabourian (2004).
16 How close the endowments need to be to the Pareto set depends on the degree
of substitutability of goods: with more substitutability the competitive outcome
may be obtained (as δ → 1) for a larger set of initial conditions. The trade-off
is related to the possibility of strategically manipulating the terms of trade when
either big trades are involved, or the marginal rates of substitution change a lot.
Making trades smaller, or reducing the effect of trades on the marginal rates of
substitution, reduces the extent to which the terms of trade can be manipulated.
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announces prices and maximum trading constraints, in which
trade occurs upon unanimous acceptance, the continuation game
in case of rejection does not depend on the actions previously
taken by the players, and responses are sequential. The latter
qualification is not essential: If traders are allowed to respond
simultaneously, the competitive result can be obtained applying
to a refinement of SSP that ensures agents do not play weakly
dominated strategies. Such refinement involves trembles in the
players’ responses: If in a SSP trader k is rejecting an offer at
some history, all traders j ≠ k are indifferent between rejecting
and accepting that offer, because k’s rejection makes j’s actions
at that history all outcome-equivalent. For this reason, if players
respond simultaneously, wemay have for instance an SSP inwhich
everybody rejects every offer. The consideration of trembles in
the players’ responses rules out this sort of equilibria based on
players’ coordinations on a rejection. No trembles in agents’ offers
or demands are necessary for the result.17

On the Stationarity restriction. It is important to emphasize that
the restriction to stationary equilibria is a strong one. Other than
the simplicity of the analysis, the general argument in favor of
stationary strategies is that they entail relatively simpler behavior,
and would therefore be chosen by somewhat boundedly rational
agents. But this argument does not seem convincing in general
games.18 Recently, Sabourian (2004) and Gale and Sabourian
(2005) have made precise the sense in which boundedly rational
agents would play stationary strategies in the equilibria of their
models. This allows them to overcome the difficulties arisen in
Rubinstein andWolinsky (1990)without assuming away the use of
non-stationary strategies. The present paper did not focus on these
issues of complexity, and the stationarity of equilibrium strategies
is simply assumed. Chatterjee and Sabourian (2000) obtain
stationarity of equilibrium strategies in multi-person bargaining
games through the introduction of complexity costs. Whether the
adoption of SSP in the present setting may be supported by a
similar notion of bounded rationality is an interesting question left
to future research.
Implementation of Walrasian allocations. The results of this paper
maybe interpreted as one of limit implementation of theWalrasian
equilibrium correspondence (the limit concerning the agents’
discount factors). From this point of view, the present work
is also related to Hurwicz (1979), who studied the problem of
implementing Walrasian allocations from a mechanism design
perspective: In the mechanism constructed by Hurwicz (1979),
players simultaneously announce pairs of vectors (pi, yi), i =

1, . . . , n, where yi can be interpreted as the proposed trade in
non-numeraire goods for trader i, and pi can be interpreted as the
price vector for non-numeraire goods proposed by i for use in the
other traders’ budget constraints. Interestingly, themessage spaces
in Hurwicz (1979) are thus similar to the proposals available to
the auctioneer in the bargaining game above. The price vector p∗

at which agents trade results from a function of the announced
(p1, . . . , pn); such function is specified by the mechanism, and
involves a term that penalizes players that unilaterally deviate
from profiles of uniform announcements. This way, everyone

17 A proof is available from the author.
18 Cf. Mailath and Samuelson (2006, ch. 5).
announces the same p∗ in equilibrium. Furthermore, under the
properly designed scheme of transfers, such equilibrium p∗ will
also be a Walrasian price.

One thing is worth pointing out though. The mechanism design
approach à la Hurwicz, as well as the market-game literature à la
Shapley and Shubik, are very different in spirit from the literature
(more relevant to the present paper) on strategic bargaining
foundations. This is because, similar to market games, it is difficult
to interpret the function that maps agents’ actions to the market
price in Hurwicz (1979) as resulting from an underlying bargaining
procedure among the agents, which is instead the main emphasis
of the literature on strategic bargaining foundations.
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