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Abstract

This paper extends the belief-free approach to robust mechanism design to dynamic

environments, in which agents obtain information over time. A social choice function (SCF)

is robustly partially implemented if it is perfect Bayesian incentive compatible for all possible

beliefs. It is shown that this is possible if and only if the SCF is ex-post incentive compatible.

Robust full Implementation imposes the stronger condition that, for all possible beliefs, all

the Perfect Bayesian Equilibria induce outcomes consistent with the SCF. Characterizing

the set of such equilibria is a key di¢ culty for studying this problem. This paper shows that,

for a weaker notion of equilibrium, the set of all such equilibria can be computed by means of

a recursive procedure which combines the logic of rationalizability and backward induction

reasoning. These results are then used to show that, in environments with single crossing

preferences and well-behaved intertemporal e¤ects, strict ex-post incentive compatibility

and a condition which limits the strength of preference interdependencies are su¢ cient to

guarantee robust full implementation.

Keywords: backward induction reasoning �dynamic mechanism design �implemen-

tation �rationalizability �robustness

JEL Codes: C72; C73; D82.

1 Introduction

A common criticism to classical theory of mechanism design is that it relies on strong common

knowledge assumptions that are unlikely to be satis�ed in reality. This viewpoint, often referred

to as the �Wilson doctrine�, has recently been revived by a series of papers by Bergemann

and Morris (2005, 2009a,b, 2011), which spurred a growing literature on robust mechanism

design. Bergemann and Morris� seminal work pursued a �belief free�approach, investigating

conditions under which (full, partial or virtual) implementation can be achieved independent
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of the agents�beliefs. More recently, alternative and less demanding approaches to robustness

have also been proposed.1 This literature, however, has only considered static settings. In

contrast, many situations of economic interest present problems of mechanism design that are

inherently dynamic. For instance, consider the problem of a social planner who wants to assign

licenses for the provision of a public good to the most productive �rm in each period. Firms�

productivity is their private information and may change over time. Furthermore, productivity

in earlier periods may be informative about later productivity, and later productivity may

depend on earlier allocative choices as well (for example, if there is learning-by-doing). In

these situations, static mechanisms may not su¢ ce to guarantee a socially desirable outcome,

and it is important for the planner to take into account the �rms� intertemporal incentives.

Moreover, problems of this kind cannot be cast within the framework received by the literature

on robust mechanism design, which assumes that agents obtain all the relevant information

before the mechanism is set in place.

The present paper extends the belief-free approach to study partial and full implementation

in problems of dynamic mechanism design. �Dynamic mechanism design�can be understood in

two ways: �rst, as the study of dynamic mechanisms (e.g., an ascending auction) in standard

(static) environments; second, as the study of mechanism design problems in environments

that are inherently dynamic, such as the example above. Our analysis applies to both cases

and innovates on the previous literature along both dimensions.2

The belief-free approach is often criticized for being excessively demanding. From a theo-

retical viewpoint, however, this approach represents an important benchmark, particularly to

analyze the methodological aspects of robust mechanism design. The insights received from

the static literature, for instance, have been adapted to less demanding notions of robustness,

which may be more appealing from an applied viewpoint (cf. Section 6). To what extent the

methodology developed for static problems can be extended to dynamic settings, however, is

not clear, particularly for the study of the full implementation problem. The belief-free ap-

proach therefore is a natural starting point to extend the theory of robust mechanism design

to dynamic settings. That is both to understand the possible limitations of this important

benchmark, and to address the fundamental methodological questions, which may prove useful

for future research based on more realistic assumptions.

Until recently, dynamic mechanism design problems were surprisingly neglected by the

literature. In recent years, a growing literature has developed to �ll this important gap.3 The

present paper departs from this literature in two main respects. First, existing papers on

dynamic mechanism design typically assume that the stochastic process that generates payo¤s

and signals is common knowledge among the agents and known to the designer. As such, the

1For environments with partial restrictions on beliefs, see Artemov et al. (2013), Lopomo et al. (2013), Kim
and Penta (2013) and Ollár and Penta (2014). For a di¤erent, �second best�approach, see Börgers and Smith
(2012a,b) and Yamashita (2012, 2013a,b). This literature is discussed more extensively in Section 6.

2Müller (2012a,b) also extends the belief-free approach to study dynamic mechanisms, but he considers virtual
implementation and only static environments. This work is further discussed in Section 6.

3Among others, see Athey and Segal (2014), Bergemann and Valimaki (2010), Pavan, Segal and Toikka (2013)
and the references therein.
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approach su¤ers from the non-robustness problem discussed above. Second, the literature thus

far has focused solely on problems of partial implementation. That is, the design of �Perfect

Bayesian Incentive Compatible� (PBIC) mechanisms, in which agents truthfully reveal their

information in a Perfect Bayesian Equilibrium (PBE) of the game. PBIC, however, does not

rule out the possibility that other, undesirable PBE exist. The more demanding requirement

that no such equilibria exist is referred to as full implementation. This is an important question,

especially if the dynamic interaction provides agents with more opportunities to collude. At

the current state of the literature, however, very little is known on the problem. This is the

�rst paper to address the question of dynamic full implementation, let alone the robustness

requirement discussed above.4 Furthermore, the results are obtained under general assumptions

on preferences, which need not be quasilinear nor time separable. This is yet another innovation

with respect to the literature on dynamic mechanism design.

The �rst result of this paper shows that, as far as robust partial implementation is con-

cerned, the main insights from the static literature easily extend to dynamic environments: a

Social Choice Function (SCF) is PBIC for all possible beliefs if and only if it is ex-post incentive

compatible. This result is best seen as a necessary condition for robust full implementation and

enables us to focus on the novel issues that dynamic settings raise for the full implementation

problem, which is the main focus of the paper. These novelties involve both the dynamic nature

of agents�interaction and the methodology of the analysis.

From a methodological viewpoint, even when the agents�beliefs are known to the designer,

characterizing the set of PBE of a given mechanism can be very di¢ cult. This may explain why

the full implementation question has not been pursued in dynamic settings. It may thus seem

that adding the robustness requirement to the already di¢ cult full implementation problem

is doomed to make the problem intractable. This paper introduces and provides foundations

to a methodology that avoids the di¢ culties of computing the set of PBE for all possible

beliefs. The key ingredient is the notion of interim perfect equilibrium (IPE). IPE weakens

PBE allowing a larger set of beliefs o¤ the equilibrium path. The advantage of weakening PBE

in this context is twofold: on the one hand, full implementation results are stronger if obtained

under a weaker solution concept (if all the IPE induce outcomes consistent with the SCF, then

so do all the PBE, or any other re�nement of IPE); on the other hand, the weakness of IPE is

crucial to making the problem tractable. In particular, it is shown that the set of IPE-strategies

across models of beliefs can be computed by means of a �backwards procedure�that combines

the logic of rationalizability and backward induction reasoning: For each history, compute the

set of rationalizable continuation-strategies, treating private histories as types, and proceed

backwards from almost-terminal histories to the beginning of the game. Re�nements of IPE

would either lack such a recursive structure, or require more complicated backwards procedures.

These results are then applied to study conditions for full implementation in environments

4The closest work to dynamic full implementation is Lee and Sabourian (2011), who study repeated full
implementation. The main di¤erence between �dynamic�and �repeated� implementation is that, in the latter,
the distribution of types, SCF and mechanism are the same in every period, hence they do not depend on the
previous history.
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with monotone aggregators of information: In these environments, information is revealed

dynamically, and while agents�preferences may depend on their opponents� information (in-

terdependent values) or on the signals received in any period, in each period all the available

information (across agents and current and previous periods) can be summarized by one-

dimensional statistics. In environments with single-crossing preferences, su¢ cient conditions

for full implementation in direct mechanisms are studied: these conditions bound the strength

of preference interdependence and require that the intertemporal e¤ects are well-behaved.

The rest of the paper is organized as follows: Section 2 introduces the formalism for the

environments and agents�beliefs; Section 3 introduces mechanisms, the notation for the result-

ing dynamic games, and the key notions of implementation. The analysis of partial and full

implementation is contained in Sections 4 and 5, respectively. Section 6 concludes.

2 Setup

Belief-Free Environments. Consider an environment with n agents and T periods, T <1.
In each period t = 1; :::; T , each agent i = 1; :::; n observes a signal �i;t 2 �i;t = [�li;t; �hi;t] � R.5

For each i, �i := �Tt=1�i;t is the set of i�s payo¤ types: a payo¤-type is a complete sequence of
agent i�s signals in every period. A state of nature is a pro�le of agents�payo¤ types, and the

set of states of nature is de�ned as � := �1 � :::��n. As usual, we let ��i;t := �j 6=i�j;t and
��i := �j 6=i�j . A similar notation will be used for other product sets.

In each period t, the social planner chooses an allocation from a non-empty subset of a

�nitely dimensional Euclidean space, �t. The set � = �Tt=1�t denotes the set of feasible
sequences of allocations.6 Agents are expected utility maximizers, with preferences over se-

quences of allocations that depend on the realization of �: for each i = 1; :::; n, preferences are

represented by utility functions ui : ���! R. Thus, the states of nature characterize every-
body�s preferences over the sets of feasible allocations. A (belief-free) environment therefore is

de�ned by a tuple E =


N;�;�; (ui)i2N

�
, assumed common knowledge.

Environment E thus represents agents�information and preferences, not their beliefs. For
each t, let Y ti := �t�=1�i;� denote the set of possible histories of player i�s signals up to period
t. For each t and private signals yti = (�i;1; :::; �i;t) 2 Y ti , agent i knows that the true state of
nature �� 2 � belongs to the set

�
yti
	
�
�
�T�=t+1�i;�

�
� ��i. For any � 2 � and t = 1; :::; T ,

we let yti (�) = (�i;1; :::; �i;t) denote the history of i�s private signals realized at state �, up to

period t. We de�ne yt (�) and yt�i (�) similarly. Histories of allocations will be denoted by

xt = (�1; :::; �t) 2 �t�=1�� .
5The �nite horizon restriction is important for the results on full implementation, which are based on a

backwards procedure. The restriction is also maintained by Müller (2012a,b), but not by the (non-robust)
dynamic mechanism design literature, which focuses on partial implementation alone (e.g., Pavan et al., 2013).

6 In this paper the social choice function (SCF, introduced below) is taken as a primitive. Hence, an explicit
representation of intertemporal constraints is unnecessary. Possible intertemporal constraints, as well as the
designer�s objective function, are accommodated implicitly in the SCF, which can be thought of as the argmax
of a constrained optimization problem. The analysis that follows therefore accommodates the possibility of
intertemporal constraints in the designer�s optimization problem, of course provided that the resulting SCF
satis�es the conditions stated in the results.
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Social Choice Functions. The description of the primitives is completed by a social choice

function (SCF), f : � ! �. We assume that the SCF is such that period-t choices are

measurable with respect to the information available in that period. That is, we assume that

there exist functions ft : Y t ! �t, t = 1; :::; T , such that f (�) =
�
ft
�
yt (�)

��T
t=1

for each � 2 �.

Models of Beliefs. At any point in time, agents have (subjective) beliefs about the features

of the environment they do not know. These beliefs are distinct from information, which is en-

coded in the payo¤ types and directly a¤ects the SCF. Such beliefs are thus modeled separately

from players�information. A model of beliefs for an environment E is a tuple B = (Bi; �i)i2N
such that for each i, Bi is the set of types, assumed Polish, and �i : Bi ! �(��B�i) is a
continuous function.7

At period 0 agents have no information about the environment. Their (subjective) priors

about the payo¤ state and the opponents�beliefs are implicitly represented by means of types

bi, as the beliefs �i (bi) 2 �(��B�i). In periods t = 1; :::; T , agents update their beliefs

using their private information (the history of payo¤ signals), and other information possibly

disclosed by the mechanism set in place. The main di¤erence with respect to standard (static)

type spaces (as in Bergemann and Morris (2005), for instance), is that players here do not

know their own payo¤-type at the outset: payo¤-types are disclosed over time, and known

only at the end of period T . Thus, an agent�s type at the beginning of the game is completely

described by a �prior�belief over the payo¤ states and the opponents�types.

Standard models of mechanism design (e.g., references in footnote 3) assume common

knowledge of a speci�c model of beliefs, and assume a single common prior. This corresponds

to the case in which Bi = fbig is a singleton for each i, and beliefs �i (bi) � p� 2 �(�) are the
same for all i and have full support. The further special case of independent types (e.g., Pavan

et al. (2013)) requires that there exist p̂i 2 �(�i) for each i such that p� = 
i2N p̂i. A further
assumption, common in the literature, is that such p̂i are Markov processes (e.g., Bergemann

and Valimaki (2010)). In constrast, here we will be interested on implementation results for

all possible models of beliefs B = (Bi; �i)i2N .
To summarize our terminology, in an environment with beliefs (E ;B) we distinguish the

following stages: in period 0 (the interim stage) agents have no information, their (subjective)

prior is represented by types bi, with beliefs �i (bi) 2 �(��B�i); T di¤erent period-t interim
stages, for each t = 1; :::; T , when a type�s beliefs after a history of private signals yti are

concentrated on the set
�
yti
	
�
�
�T�=t+1�i;�

�
���i�B�i: The term ex-post stage refers to the

�nal realization, when the state of nature is revealed.

3 Mechanisms, Incentive Compatibility and Implementation

A mechanism is de�ned by a set of messages Mi;t for every i 2 N and t = 1; :::; T , and

by a collection of outcome functions (gt)t=1;:::;T which assign allocations to each history at

7A Polish space is a complete separable metric space. For any X, �(X) denotes the set of probability
measures on X, endowed with the corresponding Borel sigma-algebra.
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each stage. As usual, for each t we de�ne Mt = �i2NMi;t. It is assumed that the reported

messages are publicly observed at the end of each period. Formally, let � denote the empty

history, and de�ne H0 := f�g. For each t = 1; :::; T , the set of public histories of length t is

de�ned as Ht := Ht�1 �Mt, and the set of public histories is denoted by H := [T�=0H� . The

period-t outcome function is a mapping gt : Ht�1�Mt ! �t. A mechanism therefore is a tuple

M = h
�
(Mi;t)i2N ; gt

�T
t=1
i, assumed commond knowledge. We focus throughout on mechanisms

in which the sets Mi;t are compact subsets of �nitely dimensional Euclidean spaces.

A direct mechanism is such thatMi;t = �i;t, and gt = ft for all i 2 N and t = 1; :::; T . That

is, in a direct mechanism agents are asked to announce their signals at every period. Based

on the reports, the mechanism chooses the period-t allocation as speci�ed by the SCF, that is

according to the function ft : Y t ! �t. To emphasize the dependence of the direct mechanism

on the SCF f , we denote it byMf .

Each mechanism induces a dynamic game. If agents�beliefs B = (Bi; �i)i2N are speci�ed,

the resulting game is a standard Bayesian game, which can be analyzed using standard solution

concepts, such as Bayes-Nash (BNE) or Perfect Bayesian Equilibrium (PBE). For the analysis

of robust implementation, however, it is useful to consider environments in which agents�beliefs

are not speci�ed. For this reason we also introduce the notion of a �belief-free game�, which

obtains imposing a mechanism M on a belief-free environemnt E . In these games, solution
concepts such as BNE or PBE are not de�ned. Their analysis therefore requires novel solution

concepts, which will be introduced in Section 5.1.

Belief-Free Games. An environment E and a mechanismM determine a belief-free dynamic

game, that is a tuple (E ;M) = hN; (Hi;�i; ui)i2N i. Sets N , �i and payo¤ functions ui are as
de�ned in E . The sets Hi denote the set of i�s private histories, de�ned as follows: for each
i and t, let Y ti = �t�=1�i;� , Ht

i := Ht�1 � Y ti and �nally Hi := [T�=1H�
i . That is, for each

i and t, Ht
i denotes the set of private histories of length t for player i. Each private history

hti =
�
ht�1; yti

�
2 Ht

i is made of two components: a public component, h
t�1, which consists of

the agents�messages in periods 1 through t � 1; and a private component, yti , which consists
of agent i�s private signals from period 1 through t. It is convenient to introduce notation for

the partial order representing the precedence relation on the sets H and Hi: h� � ht indicates

that history h� is a predecessor of ht (similarly for private histories:
�
h��1; y�i

�
�
�
ht�1; yti

�
if

and only if h� � ht and y�i � yti .)

Agents� strategies in the belief-free game are measurable functions si : Hi !
ST
t=1Mi;t

such that si
�
hti
�
2 Mi;t for each hti 2 Hi. The set of i�s pure strategies is denoted by Si.

We also de�ne the sets S = �i2NSi and S�i = �j 6=iSj . For any strategy pro�le s 2 S, each

realization of � 2 � induces a terminal allocation gs (�) 2 �. Strategic-form payo¤ functions,

Ui : S��! R, are such that Ui (s; �) = ui (g
s (�) ; �) for each s and �. For each public history

ht and player i, let Si
�
ht
�
denote the set of player i�s strategies that are consistent with history

ht being observed. Since i�s private histories are only informative of the opponents�behavior
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through the public history, for each i 2 N , hti =
�
ht�1; yti

�
2 Hi and j 6= i, Sj

�
hti
�
= Sj

�
ht�1

�
.8

In a direct mechanism, the truthtelling strategies are those strategies that, conditionally

on having reported truthfully in the past, report each period-t signal truthfully. Truthtelling

strategies may di¤er in the behavior they prescribe at histories following past misreports, but

they all are outcome equivalent and induce truthful revelation in each period �on the path�.

The set of such strategies is denoted by S�i � Si, and let S� := �i2NS�i . For later reference, it
is useful to introduce the following notion of incentive compatibility:

De�nition 1 (Ex-post Incentive Compatibility) SCF f is ex post incentive compatible

(EPIC) if the truthtelling strategy is an ex-post equilibrium of the direct mechanism. That is,

if for all i 2 N , � 2 �, s� 2 S� and s0i 2 Si, Ui (s�; �) � Ui
�
s0i; s

�
�i; �

�
. SCF f is strictly EPIC

if the inequality holds strictly for all s0i 2 SinS�i .

Bayesian Games. A tuple (E ;M;B) determines a dynamic Bayesian game. Strategies in a
Bayesian game are measurable mappings �i : Bi ! Si. The set of strategies in (E ;M;B) is
denoted by �i. Agent i�s information sets in the Bayesian game are Bi�(Hi [ f�g), with generic
element (bi; hi). At period 0, agents only know their own type bi. Period-0 histories therefore

are of the form (bi; �) 2 Bi�f�g, and for each t � 1, period-t histories are
�
bi; h

t
i

�
2 Bi�Ht

i . In

the following, we let h0i � �, so that information sets are written as
�
bi; h

t
i

�
2 Bi�(Hi [ f�g) for

t � 0. From the point of view of each i, for each
�
bi; h

t
i

�
2 Bi� (Hi [ f�g) and strategy pro�le

�, the induced terminal history is a random variable that depends on the realization of the state

of nature and of the opponents�types. This random variable is denoted by g�j(bi;h
t
i) (�; b�i).

We de�ne the Bayesian game strategic-form continuation payo¤ functions as follows:

Ui
�
�; �; b�i; bi; h

t
i

�
= ui

�
g�j(bi;h

t
i) (�; b�i) ; �

�
.

Since (E ;M;B) is a dynamic Bayesian game, we consider Perfect Bayesian Equilibrium
(PBE) as solution concept. This requires introducing notation for belief systems, which rep-

resent players� beliefs about the payo¤ state and the opponents� types at each information

set of the Bayesian game. Formally, a system of beliefs for (E ;M;B) is a pro�le p = (pi)i2N
where each pi is a collection of conditional beliefs pi

�
bi; h

t
i

�
2 �(��B�i), one for each�

bi; h
t
i

�
2 Bi � (Hi [ f�g), such that pi (bi; �) = �i (bi) for all bi 2 Bi.

De�nition 2 Fix an environment E, a model of beliefs B, and a SCF f .

(Truthful PBE) The assessment (�; p) is a truthful perfect Bayesian equilibrium of

the Bayesian game
�
E ;Mf ;B

�
if it satis�es the following conditions: (i) (�; p) is a PBE of�

E ;Mf ;B
�
; (ii) �i (bi) 2 S�i for all i and bi 2 Bi; (iii) beliefs pi assign probability one to the

other agents having reported truthfully at all histories.

(PBIC) The SCF f is perfect Bayesian incentive compatible (PBIC) on B, if there exists
a truthful PBE of

�
E ;Mf ;B

�
.

8Sets Hi and Si are endowed with the standard metrics derived from HT ��. See Appendix A.1 for details.
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Condition (i) is self-explanatory. Condition (ii) requires the equilibrium pro�le to be truth-

ful, and corresponds to the �on-path truthful� condition of Pavan et al. (2013). Condition

(iii) says that agent i always believes that the opponents have been following their equilibrium

strategies. It does not necessarily follow from Bayesian updating because the general setup

accommodates models of beliefs over a continuum of signals. In these cases, every history has

a zero probability. This condition is standard in the literature on dynamic mechanism design

(e.g., Pavan et al. (2013), Bergemann and Valimaki (2010)).

Robust Implementation in direct mechanisms. In the following we focus on partial

and full implementation in direct mechanisms, discussed respectively in Sections 4 and 5. The

restriction to direct mechanisms is standard in the literature on dynamic mechanism design,

which has only focused on partial implementation. The restriction is known to be with loss

of generality for the full implementation problem, in that more complicated mechanisms may

make full implementation easier to achieve.9 The simplicity of direct mechanisms, however, is

an important desideratum from the viewpoint of the Wilson doctrine, and it has the further

advantage of making the comparison between partial and full implementation easier. Finally,

since restricting the class of mechanisms makes full implementation results harder to obtain,

the restriction to direct mechanisms strengthens the positive results obtained in Sections 5.

Standard mechanism design assumes that agents�beliefs are known to the designer, and

therefore implementation is de�ned for a given model B. To address the issue of robustness,
we require that partial and full implementation are achieved for all possible beliefs:

De�nition 3 (Robust Partial Implementation) A SCF f is robustly partially implementable
in the direct mechanism if it is PBIC on all models of beliefs.

De�nition 4 (Robust Full Implementation) SCF f is robustly fully implementable in

the direct mechanism if for every B =(Bi; �i)i2N , every PBE-strategy pro�le � of the Bayesian
game

�
E ;Mf ;B

�
is such that � (b) 2 S� for all b 2 B.

De�nitions 3 and 4 extend to dynamic settings the notions introduced, respectively, by

Bergemann and Morris (2005, BM05) and Bergemann and Morris (2009a, BM09). As discussed

in the introduction, the �belief-free�approach to robustness is clearly very demanding. From

a theoretical viewpoint, however, it is an important benchmark, particularly to analyze the

methodological aspects of robust mechanism design (cf. Section 6). The belief-free approach

therefore is the natural starting point to extend robust mechanism design to dynamic settings.

9For this reason, the classical literature on Bayesian Implementation typically adopts complex mechanisms in
which agents report more than their own type (e.g., Maskin (1999) Postlewaite and Schmeidler (1988), Palfrey
and Srivastava (1989) and Jackson (1991)). Full implementation results via simple design of transfers are
provided by Ollár and Penta (2014).
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4 Robust Partial Implementation

BM05 de�ne robust (partial) implementation as interim incentive compatibility (IIC) on all

type spaces. De�nition 3 essentially adapts the underlying notion of incentive compatibility,

replacing IIC with the standard in the literature on dynamic mechanism design, PBIC. It can

thus be seen as the dynamic counterpart of BM05, as well as the belief-free counterpart of the

dynamic mechanism design literature.

BM05 show that a SCF is IIC on all type spaces if and only if it is ex-post incentive

compatible. Since, for any model of beliefs, PBIC implies IIC, an immediate implication of

their result is that ex-post incentive compatibility (Def. 1) is a necessary condition for robust

implementation in dynamic settings (Def. 3). But since PBIC is in general more demanding

than IIC, achieving PBIC for a given model of beliefs in general requires stronger conditions

than IIC (e.g., Pavan et al. (2013)). As the next result shows, however, PBIC has no extra

bite once it is required for all models of beliefs. EPIC therefore is both necessary and su¢ cient

for robust partial implementation (the proof is in Appendix D.1).

Proposition 1 (Partial Implementation) SCF f is PBIC on all models of beliefs if and

only if it is ex post incentive compatible.10

Thus, from the viewpoint of partial implementation, the belief-free approach entails the

same incentive compatibility conditions in static as in dynamic settings. This result, however,

does not mean that this is an inherently static approach: beyond incentive compatibility,

dynamics has an important role even within the belief-free approach. The next section on full

implementation provides one instance of this general point (for another instance of the same

point, see also Müller (2012a,b)).

5 Robust Full Implementation

This section focuses on robust full implementation in direct mechanisms (Def. 4). It can thus

be seen as the dynamic counterpart of BM09. In static settings, BM09 de�ne robust full imple-

mentation by requiring that, for all type spaces, all the BNE induce truthful revelation. Since

the set of all such equilibria can be computed applying rationalizability to the belief-free (sta-

tic) game, BM09 study conditions to ensure that truthful revelation is the only rationalizable

strategy in the direct mechanism. Besides (strict) ex-post incentive compatibility of the SCF,

these conditions require the preference interdependencies to be �not too strong�. Intuitively,

the reason is that in an EPIC mechanism, strong preference interdependence determines strong

strategic externalities, which are a source of multiplicity and may thus undermine the possi-

bility of full implementation. Dynamic settings present two distinct orders of problems. First,

10Note that Proposition 1 concerns the properties of a SCF and of the associated direct mechanism. It does
not state that, in general games, the set of ex-post equilibria and the set of PBE for all models of beliefs coincide.
See Borgers and McQuade (2007) for a discussion of the relations between solution concepts based on sequential
rationality and ex-post equilibria in dynamic games.
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independent of the robustness requirement, characterizing the set of equilibria is di¢ cult in a

dynamic setting. Second, the dynamic structure enriches the possibilities of preference inter-

dependencies as well as strategic externalities, which can both exhibit intertemporal e¤ects.

The next section addresses the �rst problem. First, we introduce a weakening of PBE,

which we call interim perfect equilibrium (IPE), and show that the set of IPE-strategies for

all models of beliefs is characterized by a �backwards procedure� which combines the logic

of rationalizability and backward induction. This result is convenient because it allows a

recursive analysis of the full implementation problem. Endowed with these results, we turn to

the second order of problems in Section 5.3, where we provide su¢ cient conditions for robust

full implementation. Since IPE is weaker than PBE, achieving full implementation through

the backwards procedure su¢ ces for robust full implementation, as de�ned in De�nition 4.11

5.1 IPE and the backwards procedure

Fix a Bayesian game, (E ;M;B). We say that a strategy pro�le � is �sequentially ratio-

nal�with respect to belief system p, if for every i 2 N and every (bi; hti) 2 Bi � Hi, �i 2
argmax�0i2�i

R
��B�i Ui(�; �; b�i; bi; h

t
i) � dpi(bi; hti). For each agent i and for each information

set
�
bi; h

t�1
i

�
, a strategy pro�le � and conditional beliefs pi(bi; ht�1i ) induce a probability mea-

sure P �;pi(bi; ht�1i ) 2 �(Ht�1 � Y ti ) over the private histories of length t.

De�nition 5 (IPE) An assessment (�; p) is an Interim Perfect Equilibrium (IPE) if � is

sequentially rational with respect to p and if p satis�es the following conditions: (B-1) for

each hti = (yti ; h
t�1) 2 Hi and bi 2 Bi, pi(bi; hti) 2 �(fytig � (�T�=t+1�i;� ) � ��i � B�i), and

(B-2) for each hti such that h
t�1
i � hti, for every measurable E � � � B�i, pi(bi; ht�1i ) [E] =

pi(bi; h
t
i) [E] � P �;pi(bi; ht�1i )

�
hti
�
.

Condition (B-1) requires conditional beliefs at each information set to be consistent with

the player�s private information. Condition (B-2) requires that belief system pi is consistent

with Bayesian updating whenever possible, both �on-�and �o¤-the-path�. The latter condition

in particular is not required by �weak PBE�(cf. Mas-Colell et al. (1995, p.285)). Conditions

(B-1) and (B-2) impose essentially no restrictions on the beliefs held at histories that receive

zero probability at the preceding node.12 IPE therefore is weaker than PBE. Also note that any

player�s deviation is a zero probability event, and treated the same way: in particular, if history

hti is precluded by �i(bi; h
t�1
i ) alone, then P �;pi(bi; ht�1i )[hti] = 0, and agent i�s beliefs at (bi; h

t
i)

are unrestricted the same way they would be after an unexpected move of the opponents. As

it will be discussed shortly, this feature of IPE is key to obtaining a recursive and tractable

characterization of the set of equilibria.

Belief-Free Backwards Rationalizability. We introduce next a solution concept for belief-

free dynamic games, which will be shown to characterize the set of all IPE-strategies over all
11Note that, contrary to partial implementation, full implementation results in general are stronger if obtained

for weaker solution concepts.
12Hence, conditions B(i), B(iii) and B(iv) in Fudenberg and Tirole (1991, p.332) need not hold in an IPE.
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models of beliefs. The formal de�nition is notationally cumbersome, and left to Appendix

B, but the idea is straightforward. Fix a belief-free game, (E ;M), and a public history of

length T � 1, hT�1. For each payo¤-type yTi 2 �i of each agent, the continuation game is a
(belief-free) static game with strategies sijhT�1 2 Sh

T�1
i . We apply belief-free rationalizability

(e.g., BM09) to this game, and let Ri(hT�1) denote the set of pairs (yTi ; sijhT�1) such that
continuation strategy sijhT�1 is rationalizable in the continuation game from hT�1 for type yTi .

We do this for all public histories of length T � 1. We then proceed backwards: for each public
history of length T � 2, hT�2, we apply rationalizability to the continuation game from hT�2,

restricting continuation strategies sijhT�2 2 Sh
T�2
i to be rationalizable in the continuation

games from histories of length hT�1. We let Ri(hT�2) denote the set of pairs (yT�1i ; sijhT�2)
such that continuation strategy sijhT�2 is rationalizable in the continuation game from hT�2

for type yT�1i . Inductively, this is done for each ht�1, until the initial node � is reached, for

which the set of �Belief-Free Backwards Rationalizable�(BFBR) strategies, R�i , is computed.

Proposition 2 (Characterization of the set of IPE.) Fix a belief-free game (E ;M). For

each i: ŝi 2 R�i if and only if 9B =(Bi; �i)i2N s.t. 9b̂i 2 Bi and (�̂; p̂) such that (�̂; p̂) is an

IPE of (E ;M;B) and ŝi = �̂i(b̂i):

The proof of this result can be found in Appendix C. To grasp the basic intuition, notice

that an implication of this proposition is that, for each public history h, the set of IPE strategies

in the continuation game from h coincides with the set of IPE strategies of the continuation

game considered in isolation. Hence, the set of IPE strategies for all models of beliefs has

a recursive structure analogous to that of the set of subgame perfect equilibria in complete

information games. Such set of equilibria can thus be computed �backwards�, analyzing each

continuation game in isolation. The property of IPE highlighted above, that own-deviations

are treated the same as the opponents�, is key to the possibility of considering continuation

games in isolation, which is needed for this result.

Since IPE is weaker than PBE, Propositions 1 and 2 imply that an EPIC SCF is fully

robustly implemented by a direct mechanism if all the BFBR-strategies are truthful:

Corollary 1 Let f be EPIC, and consider the belief-free game induced by direct mechanism
associated to SCF f ,

�
E ;Mf

�
. If for all i, R�i 6= ; and R�i � S�i , then f is fully robustly

implementable (Def. 4).

By transforming the original problem into an arti�cial sequence of static problems, the

backwards procedure enables us to build on the insights of the static literature to obtain

su¢ cient conditions that guarantee that all the strategies consistent with this solution concept

are truthful. Robust full implementation then follows from Corollary 1. The next section

contains an illustrative example. Section 5.3 presents the general results.
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5.2 Example: A Dynamic Public Good Problem

Consider an environment with two agents (n = 2) and two periods (T = 2), and let �i;t = [0; 1]

for each i and t. In each period, the planner chooses some quantity qt 2 �t � R+ of public
good. Agent i�s marginal utility for the public good in period t is a function �i;t (�) of the
realized state: for any � = (�i;1; �i;2; �j;1; �j;2) 2 �,

�i;1 (�1) = �i;1 + �j;1 and

�i;2 (�1; �2) = ' (�i;1; �i;2) + ' (�j;1; �j;2) ;

where  � 0 and ' : [0; 1]2 ! R is continuously di¤erentiable and strictly increasing in both
arguments (hence, �rst period signals a¤ect second period valuations). Furthermore, if  = 0,

this is a private-values setting; for any  > 0, agents have interdependent values. Finally, we

assume time-separability and transferable utility. Agent i�s utility function therefore is:

ui (q1; q2; �i;1; �i;2; �) = �i;1 (�1) � q1 + �i;1 (1)

+ [�i;2 (�1; �2) � q2 + �j;2] ,

where �i;t denotes the transfer at period t = 1; 2. Notation �i;t is mnemonic for �aggregator�:

functions (�i;t)t=1;2 aggregate the information available to all the agents up to period t into

real numbers which uniquely pin down i�s preferences. Assuming a cost of production equal to

c (qt) =
1
2q
2
t , the optimal levels of public good in the two periods are such that, for any � 2 �:

q�1 (�) = �i;1 (�1) + �j;1 (�1) and (2)

q�2 (�) = �i;2 (�1; �2) + �j;2 (�1; �2) . (3)

We consider here robust implementation of the e¢ cient rule, (q�t )t=1;2. By Proposition

1, ex-post incentive compatibility is a necessary condition for robust implementation. We

therefore let (��i;t; �
�
j;t)t=1;2 denote the ex-post incentive compatible transfers, and consider the

SCF f = (q�t ; �
�
i;t; �

�
j;t)t=1;2.

13 To see that f is indeed EPIC, for any (�;m), let �i (�;m) :=

�i;2 (m)� �i;2 (�). Given a pro�le of �rst period reports m̂1 = (m̂i;1; m̂j;1) and private signals

(�̂i;1; �̂i;2), i�s best response m�
i;2 to point beliefs (�j;1; �j;2;mj;2) at the second period satis�es:14

�i

�
�̂i;1; �̂i;2; �j;1; �j;2; m̂1;m

�
i;2;mj;2

�
= 0. (4)

13The EPIC transfers �� are de�ned as follows: for any � 2 �,

��i;1 (�i;1; �j;1) = � (1 + )
�
 � �i;1 � �j;1 +

1

2
�2i;1

�
and

��i;2 (�i;1; �j;1) = � (1 + )
�
 � ' (�i;1; �i;2) � ' (�j;1�j;2) +

1

2
' (�i;1�i;2)

2

�
.

14For the sake of illustration, we ignore here the possibility of corner solutions, which do not a¤ect the
fundamental insight. Corner solutions will be discussed in Section 5.3.
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Similarly, given private signal �̂i;1 and point beliefs about the future own signal and message

and about the opponents� signals and reports in both periods, (�i;2;mi;2; ��i;m�i), the �rst

period best-response m�
i;1 for agent i satis�es:

m�
i;1 � �̂i;1 =  (�j;1 �mj;1)

+
@'
�
m�
i;1;mi;2

�
@mi;1

��i
�
�̂i;1; �i;2;m

�
i;1;mi;2; ��i;m�1

�
(5)

It is now easy to verify that f = (q�t ; �
�
i;t; �

�
j;t)t=1;2 is EPIC: for any �, if agent i has reported

truthfully in the past (mi;1 = �i;1) and he expects the opponents to report truthfully (��i =

m�i), then (4) is satis�ed if and only if i reports truthfully in the second period (mi;2 = �i;2).

Furthermore, if�i (�;m) = 0, the right-hand side of (5) is zero if the opponents report truthfully

in the �rst period, and so it is optimal to report m�
i;1 = �̂i;1. Notice that this is the case for

any  � 0, which means that f is robustly partially implementable for all  � 0.
Ex-post incentive compatibility, however, does not su¢ ce for full implementation, as non-

truthful equilibria may also exist. To address this problem, we apply the backwards procedure

R� introduced above. First, notice that (4) implies that, conditional on having reported truth-

fully in the �rst period (mi;1 = �i;1), truthful revelation in the second period is a best-response

to truthful revelation of the opponent, irrespective of the realization of �. If i misreported in

the �rst period (mi;1 6= �i;1), then (maintainingmj;t = �j;t for t = 1; 2) the optimal report in the

second period is a further misreport (mi;2 6= �i;2) such that the implied value of the aggregator

�i;2 is equal to its true value (i.e., �(�; m̂1;m2) = 0). This is the notion of �self-correcting

strategy�, sci : a strategy that reports truthfully at the beginning of the game and at every

truthful history, but in which earlier misreports are followed by further misreports, to correct

the impact of the previous misreports on the value of the aggregator �i;2.15

We show next that, if  < 1, the self-correcting strategy pro�le is the only pro�le surviving

the backwards procedure introduced above. Hence, given the result in Proposition 2, the self-

correcting strategy is the only IPE-strategy, hence the only PBE-strategy, for any model of

beliefs. Since sc induces truthful revelation, this implies that f is fully robustly implementable

if  < 1. To this end, �x the pro�le of �rst period reports, m̂1. Given �i = (�i;1; �i;2) and

mi;2 2Mi;2, let wi (m̂i;1;mi;2; �i) = [' (m̂i;1;mi;2)� ' (�i;1; �i;2)] denote type �i�s implied over-
report of the value of '. Then, equation (4) can be interpreted as saying that the optimal

over-report of ' (�i) is equal to � times the (expected) under-report of ' (�j). Let w¯
0
j and

w̄0j denote, respecively, the minimum and maximum possible values of wi (m̂i;1;mi;2; �i) over

(mi;2; �i). Then, if i is rational, the optimal over-report for type �i at history m̂1, w�i (�i; m̂1),

is bounded above and below, respectively, by w̄1i �  �w
¯
0
j and w¯

1
i � ��w̄0j . Recursively, de�ne

w̄ki = ��w¯
k�1
j and w

¯
k
i = �w̄k�1j . Also, for each k and i, let zki � [w̄ki�w¯

k
i ] denote the distance

between the maximum and lowest possible over-report at step k. Substituting, we obtain a

15 In this example, the self-correcting strategy can be related to the �strongly truthful�strategy of Pavan et al.
(2013), rede�ning i�s second period signals as ' (�i). This transformation, however, is not always possible in the
general environments of Section 5.3. Footnote 17 discusses this point in some detail.
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system of di¤erence equations, zk= � � zk�1, where:

zk=

 
zki
zkj

!
and � =

"
0 

 0

#
: (6)

Notice that the continuation game from m̂1 is dominance solvable if and only if zk ! 0 as

k !1. In that case, for each �i, w�i (�i; m̂1)! 0, and so the continuation of the self-correcting

strategy is uniquely rationalizable in the continuation game. In this example, this is the case

if and only if  < 1. Hence, if  < 1, the only rationalizable outcome in the continuation from

m̂1 guarantees that � = 0. Given this, the �rst period best response (5) simpli�es to

m�
i;1 � �̂i;1 =  (�j;1 �mj;1) :

The same argument can be applied to show that truthful revelation is the only rationalizable

strategy in the �rst period if and only if  < 1. Then, if  < 1, the self-correcting strategy

is the only strategy surviving the backwards procedure R�, hence the only strategy played as

part of PBE, for any model of beliefs. It follows that, if preference interdependencies are not

too strong, f is robustly fully implementable.

Key properties and their generalizations. The next section generalizes the key insights

of this example to environments with monotone aggregators of information (EMA, Def. 6).

As in the example above, these environments have the property that for each agent and in

each period, all the available information (across time and agents) can be summarized by T

one-dimensional statistics (one for each period), which jointly pin down the agent�s prefer-

ences. Preferences, however, need not be additively separable over periods nor quasilinear. To

accommodate the more general class of preferences, the notion of self-correcting strategy will

be generalized. A �contraction property�will be introduced to formalize the idea of bounding

preference interdependencies, which generalizes the condition  < 1 in the example. The main

results show that, if the SCF is strictly EPIC and preferences satisfy such a contraction prop-

erty and properly de�ned single-crossing conditions, then sc is the only strategy that survives

the backwards procedure. The SCF is therefore robustly fully implementable.

As shown by the example, despite EPIC is satis�ed here, the analysis still presents non

trivial dynamics due to the intertemporal interaction and the full implementation requirement:

in the presence of strategic uncertainty, ruled out in the partial implementation approach, de-

pending on the agent�s beliefs about future signals and others�strategies, misreporting in one

period may be a best response even if the SCF is EPIC. It is only thanks to the methodology

based on BFBR that we can ensure that, if  < 1, �(�;m) = 0 independent of the agent�s

current choice, and hence we can analyze the problem as if it is a static one. Further �intertem-

poral e¤ects�, which do not arise in the example above, are possible in the general framework

(e.g., an example with �path dependent�preferences is discussed in Sections 5.3.1 and 5.3.2).
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5.3 Robust Full Implementation

De�nition 6 (EMA) An Environment admits monotone aggregators (EMA) if, for each i,
and for each t = 1; :::; T , there exists an aggregator function �i;t : Y t ! R and a valuation

function vi : �� RT! R that satisfy the following conditions:

1. For each (��; ��) 2 ���, ui (��; ��) = vi

�
��; (��i (y

� (��)))T�=1

�
:

2. �i;t and vi are continuous and �i;t is strictly increasing in �i;t.

3. For any yti ; ŷ
t
i 2 Y ti , if �i;t

�
yti ; y

t
�i
�
> �i;t

�
ŷti ; y

t
�i
�
for some yt�i 2 Y t�i, then �i;t

�
yti ; ŷ

t
�i
�
>

�i;t
�
ŷti ; ŷ

t
�i
�
for all ŷt�i 2 Y t�i.

Assuming the existence of the aggregators and the valuation functions (condition 1), per

se, entails little loss of generality. The bite of the representation derives mainly from the

continuity and monotonicity conditions (2), and from condition (3), which guarantees that i�s

private histories of signals Y ti can be ordered in terms of the induced values of the period-t

aggregator �i;t.16

The next de�nition generalizes the idea of self-correcting strategy introduced in the example.

De�nition 7 (Self-correcting strategy) The self-correcting strategy, sci 2 Si, is such that
for each t = 1; :::; T and public history ht�1 = ~yt�1, and for each hti =

�
ht�1; yti ;

�
,

sci
�
hti
�
= arg min

mi;t2�i;t

(
max

yt�i2Y t�i

���i;t �yti ; yt�i�� �i;t �~yt�1i ;mi;t; y
t
�i
���) : (7)

In words, conditional on past truthful revelation, strategy sci truthfully reports i�s period-t

signal; at histories that come after previous misreports of agent i, sci entails a further misreport,

to o¤set the impact on the period-t aggregator of the previous misresports. Strategy sc therefore

induces truthful reporting on its path, hence sc 2 S�.
Given private history hti =

�
ht�1; yti

�
(and the induced report sci

�
hti
�
), let ŷt�i

�
hti
�
be s.t.:

ŷt�i
�
hti
�
2 arg max

yt�i2Y t�i

���i;t �yti ; yt�i�� �i;t �~yt�1i ; sci
�
hti
�
; yt�i

��� . (8)

Then, the de�nition of sci and the properties of �i;t (Def. 6) imply that, for any h
t
i =

�
ht�1; yti ;

�
,

16To understand the restriction entailed by condition (3), suppose that aggregator function �i;2 in the example
of Section 5.2 is replaced by the following: �i;2 (�) = (�i;2 + �j;2)+(�i;1+�j;1)�1 f�j;1 � �i;1g (where 1 f�g denotes
the indicator function). To see how this violates condition (3), consider y2i = (3=4; 3=4) and ŷ2i = (1=2; 1=2).
Then, �i;2(y2i ; y

2
j ) > �i;2(ŷ

2
i ; y

2
j ) if y

2
j = (1=2; 1=2), but �i;2(y2i ; y

2
j ) < �i;2(ŷ

2
i ; y

2
j ) if y

2
j = (3=4; 3=4). Hence, y2i

does not imply an unambiguously higher aggregated value than ŷ2i does: whether one history of signals induces
a higher aggregated value than the other (hence a higher marginal utility for q2 in the example) depends on
the signals of the other player. This is ruled out by condition (3), which requires one history of signals to be
�unambiguously higher�than the other, in terms of the induced aggregated value.
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three cases are possible:

�i;t
�
yti ; y

t
�i
�
= �i;t

�
~yt�1i ; sci

�
hti
�
; yt�i

�
for all yt�i 2 Y t�i; (9)

�i;t
�
yti ; ~y

t
�i
�
> �i;t

�
~yt�1i ; sci

�
hti
�
; ŷt�i

�
hti
��
and sci

�
hti
�
= �hi;t, (10)

�i;t
�
yti ; ~y

t
�i
�
< �i;t

�
~yt�1i ; sci

�
hti
�
; ŷt�i

�
hti
��
and sci

�
hti
�
= �li;t. (11)

Equation (9) corresponds to the case in which strategy sci can completely o¤set the previous

misreports. But there may exist histories at which no current report can o¤set the previous

misreports. In the example of Section 5.2, suppose that the �rst period under- (respectively,

over-) report is so low (high), that even reporting the highest (lowest) possible message in the

second period is not enough to correct the implied value of '. These histories correspond,

respectively, to cases (10) and (11), associated with the highest and lowet period-t reports �hi;t
and �li;t, and in the example they induce corner solutions at the second period.

17

We introduce next a �contraction property�which bounds the strength of preference in-

terdependence, and provides a multi-period extension of the analogous condition for static

environments in BM09. To introduce the condition formally, some extra notation is needed:

for each set of strategy pro�les D � S, and for each private history hti = (ht�1; yti), let

Di(h
t
i) := fmi;t : 9 (si; s�i) 2 D s.t. si(h

t
i) = mi;tg and Di

�
ht�1

�
:=
S
yti2Y ti

Di
�
ht�1; yti

�
.

Let si
�
Di
�
ht�1

��
denote the set of pairs

�
mi;t; y

t
i

�
2 Mi;t � Y ti such that mi;t 2 Di(h

t�1; yti),

and sci
�
ht�1

�
the set of

�
mi;t; y

t
i

�
such that mi;t = sci

�
ht�1; yti

�
.

De�nition 8 (Contraction Property) An environment with monotone aggregators of in-
formation satis�es the Contraction Property if, for each non-empty D � S such that D 6= fscg
and for each public history ht�1 = ~yt�1 such that s

�
D
�
ht�1

��
6= sc

�
ht�1

�
, there exists yti and

m0
i;t 2 Di

�
ht�1; yti

�
, m0

i;t 6= sci
�
ht�1; yti

�
, such that:

sign
�
sci
�
ht�1; yti

�
�m0

i;t

�
= sign

�
�i;t

�
yti ; y

t
�i
�
� �i;t

�
~yt�1;m0

i;t;m
0
�i;t
��
; (12)

for all yt�i =
�
yt�1�i ; ��i;t

�
2 Y t�i and m0

�i;t 2 D�i
�
ht�1; yt�i

�
.

To interpret the condition, and make it more easily comparable to BM09�s, it is useful to

17Suppose that the aggregator functions satisfy the following �reduction property�: 8i;8t, 9'i;t : Y t
i ! R

and �̂i;t : R � Y t
�i s.t. �i;t

�
yti ; y

t
�i
�
= �̂i;t

�
'i;t

�
yti
�
; yt�i

�
for all

�
yti ; y

t
�i
�
(the example in Section 5.2 has this

property). Then, agents� signals can be relabeled as follows: for each i and t, let the �transformed signal�be
�0i;t = 'i;t

�
yti (�)

�
. In the relabeled model, �i;t only depends on �0i;t (not on �

0
i;� for � < t). Strategy s

c
i therefore

induces truthful revelation of the transformed signal at every period. The self-correcting strategy is thus related
to the �strongly truthful�strategies considered, for instance, by Pavan et al. (2013) to study PBIC in Markovian
environments. This connection, however, is not perfect: �rst, the environments of Def. 6 need not satisfy the
�reduction property�, and the relabeling that transforms the self-correcting into a strongly truthful strategy may
not be possible; second, sci is de�ned in belief-free environments, which do not include a stochastic process, hence
no assumptions are made on the evolution of signals over time. Thus, even if the reduction property is satis�ed,
so that the period-t aggregator �i;t is completely pinned down by the (relabeled) period-t signal �

0
i;t = gi;t

�
yti
�
,

the environment need not be Markovian: i�s beliefs about future signals, for instance, may depend on earlier
signals, even if �i;t does not.
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rewrite the argument of the right-hand side of (12) as follows:

�i;t
�
yti ; y

t
�i
�
� �i;t

�
~yt�1;m0

i;t;m
0
�i;t
�

=
�
�i;t

�
~yt�1; sci

�
ht�1; yti

�
; yt�i

�
� �i;t

�
~yt�1;m0

i;t;m
0
�i;t
��

(13)

+ �i
�
ht�1; yti ; y

t
�i
�
;

where �i
�
ht�1; yti ; y

t
�i
�
= �i;t

�
yti ; y

t
�i
�
� �i;t

�
~yt�1; sci

�
ht�1; yti

�
; yt�i

�
: (14)

First note that the term �i represents the extent by which the self-correcting strategy is in-

capable of o¤setting the previous misreports. To understand how the contraction property

formalizes the idea that preference interdependences are not too strong (restriction  < 1

in the example), consider �rst a public history ~yt�1 along which i has reported truthfully

(~yt�1i = yt�1i ). At such a history, the self-correcting strategy requires that i reports �i;t truth-

fully, so that �i(ht�1; yti ; y
t
�i) = 0. Then, the condition boils down to requiring that, given

~yt�1 and i�s period-t signal �i;t, for any m0
i;t 6= �i;t and for all yt�i and m

0
�i;t, sign [�i;t �mi;t] =

sign
h
�i;t

�
(yt�1i ; �i;t); y

t
�i
�
� �i;t

�
~yt�1;m0

i;t;m
0
�i;t)

�i
. That is, the direct impact of i�s private

signal �i;t on the aggregator �i;t is always su¢ ciently strong that the di¤erence in the aggre-

gated value between the true signals and the reported signals always has the same sign as the

di¤erence between the true and reported signal of agent i by itself, regardless of others� re-

ports in this period (m0
�i;t), or whether their earlier reports were truthful or not (~y

t�1
�i is given,

but the condition is requested for all yt�i). The same logic applies to other histories with the

property that �i = 0 (which, by equations (9)-(11), occur whenever sci (h
t
i) 2 (�li;t; �hi;t)), with

the only di¤erence that the �truthful report��i;t is now replaced by the �self-correcting report�,

sci
�
hti
�
. To account for the possibility that, at some histories, the self-correcting strategy is not

su¢ cient to o¤set the previous misreports (the corner solutions in the example of Section 5.2),

the contraction property further requires that the sign of the impact on the aggregator �i;t is

not o¤set by the previous misreports, measured by �i > 0.18

Thus, similar to BM09�s analogous condition, the contraction property limits the strength

of the preference interdependence. The key di¤erence here is that payo¤ types are revealed

over time, and the strength of the preference interdependence may vary from period to period.

The condition above ensures that such preference interdependence remains �small�at any point

in time, for all possible reports that may have already been revealed.

The last assumption to obtain the full implementation result is a single-crossing condi-

tion. As usual, single-crossing conditions allow to sort types with respect to the implemented

allocation. The key di¤erence in dynamic environments is that this sorting must also take

into account the intertemporal incentives. The single-crossing condition therefore will involve

restrictions that are both �within� and �between� periods. To cleanly separate the two, we

�rst consider �aggregator based�SCFs (Section 5.3.1), and show that a simple �within period�

18Appendix D.4 illustrates how this complexity may be avoided by adopting simple mechanisms with extended
message spaces, so that any possible past misreport can be corrected, inducing �i

�
ht�1; yti ; y

t
�i
�
= 0 at all

histories. For a similar trick, see Pavan (2008).
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single-crossing condition su¢ ces to obtain full implementation in this case. We then discuss the

restrictiveness of the aggregator-based assumption, and the extra complications due to relaxing

it. The general results are provided in Section 5.3.2.

5.3.1 Aggregator-Based SCF

Consider the SCF in the example of Section 5.2: the SCF has the property that the allocation

chosen by the SCF in period t is only a function of the values of the aggregators in period t.

The notion of aggregator-based SCF generalizes this idea.

De�nition 9 (AB-SCF) The SCF f = (ft)
T
t=1 is aggregator-based if for each t, �i;t

�
yt
�
=

�i;t
�
~yt
�
for all i implies ft

�
yt
�
= ft

�
~yt
�
.

We next introduce a standard single-crossing condition (SCC), applied to every period.

De�nition 10 (SCC-1) An environment with monotone aggregators of information satis�es
SCC-1 if, for each i, valuation function vi is such that: for each t, and �; �0 2 � s.t. �� = �0� for

all � 6= t, for each a�i;�t 2 RT�1 and for each �i;t < �0i;t < �00i;t, vi(�; �i;t; a
�
i;�t) > vi(�

0; �i;t; a�i;�t)

and vi(�; �0i;t; a
�
i;�t) = vi(�

0; �0i;t; a
�
i;�t) implies vi(�; �

00
i;t; a

�
i;�t) < vti(�

0; �00i;t; a
�
i;�t).

Equivalently: for any two allocations � and �0 that only di¤er in their period-t component,

for any a�i;�t 2 RT�1, the di¤erence �i;t (�; �0; �i;t) = vi

�
�; �i;t; a

�
i;�t

�
� vi

�
�0; �i;t; a�i;�t

�
, as a

function of �i;t, crosses zero at most once (Figure 1.a, p. 20). If T = 1, SCC-1 coincides with

BM09�s condition.

Proposition 3 (Full Implementation: AB-SCF) In an environment with monotone ag-
gregators (Def. 6) satisfying SCC-1 (Def. 10) and the contraction property (Def. 8), if an

aggregator-based social choice function satis�es Strict EPIC (De�nition 1), then R� = fscg.

The argument of the proof, which can be found in Appendix D.2, is analogous to that of

the example in Section 5.2. For each history of length T � 1, it is proved that the contraction
property and SCC-1 imply that agents play according to sc in the last stage. Then, the

argument proceeds by induction: given that in periods t+1; :::; T agents follow sc, a misreport at

period t only a¤ects the period-t aggregator. Since the SCF is aggregator-based, the allocations

at periods � 6= t are �xed, hence the problem at period-t is essentially static. The contraction

property and the �within period� SCC-1 therefore imply that the self-correcting strategy is

followed at stage t. And so on. Clearly, the entire argument relies on the methodological

results of Section 5.1, which enable us to study continuation games in isolation, and to apply

the backwards procedure.

An appraisal of the aggregator-based assumption. Consider the important special case

of time-separable preferences: for each i and t = 1; :::; T , there exist an aggregator function

18



�i;t : Y
t ! R and a valuation function vti : �t � R! R such that for each (��; ��) 2 ���,

ui (�
�; ��) =

TX
t=1

vti
�
��t ; �i;t

�
yt (��)

��
:19

In this case, the condition that the SCF is aggregator-based (Def. 9) can be interpreted as

saying that the SCF only responds to changes in preferences. These preferences, however,

cannot accommodate phenomena of path-dependence such as habit formation or learning-by-

doing. If preferences are path-dependent, the aggregator-based assumption is too restrictive.

For instance, suppose that agents in the example of Section 5.2 have the following preferences:

ui (q1; q2; �i;1; �i;2; �) = �i;1 (�1) � q1 + �i;1 (15)

+ [�i;2 (�1; �2) � F (q1) � q2 + �j;2] .

Then, the marginal utility of q2 also depends on the amount of public good provided in the �rst

period. Then, the e¢ cient rule for the second period is q�2 (�) = [�i;2 (�) + �j;2 (�)]�F (q1), which
is not aggregator-based. To allow for path-dependent preferences, therefore, it is important to

relax the aggregator-based assumption.

5.3.2 Relaxing the AB-assumption

The problem with relaxing the aggregator-based assumption is that a one-shot deviation from

sc at period-t may induce di¤erent allocations in period-t and also in subsequent periods.

Hence, the �within period�single-crossing condition (SCC-1) may not su¢ ce to conclude the

inductive step in the proof of Proposition 3, and guarantee that strategy sc is played at period-t

for all t � T . To avoid this problem, some bound is needed on the impact that a one-shot

deviation has on the outcome of the SCF. The next single-crossing condition guarantees that

such intertemporal e¤ects of one-shot deviations are not too strong.

De�nition 11 (SCC-2) An environment with monotone aggregators of information satis�es
SCC-2 if, for each i: for each �; �0 2 � such that 9t 2 f1; :::; Tg s.t. y� (�) = y� (�0) for all � < t

and ��j (�) = ��j (�
0) for all � > t and for all j, for each a�i;�t 2 RT�1 and for each �i;t < �0i;t <

�00i;t, vi(f (�) ; �i;t; a
�
i;�t) > vi(f (�

0) ; �i;t; a�i;�t) and vi(f (�) ; �
0
i;t; a

�
i;�t) = vi(f (�

0) ; �0i;t; a
�
i;�t)

implies vi(f (�0) ; �00i;t; a
�
i;�t) < vti(f (�

0) ; �00i;t; a
�
i;�t):

SCC-2 compares the allocations chosen for any two �similar�states of nature, � and �0. These

states are similar in the sense that they are identical up to period t � 1, and imply the same
value of the aggregators at all periods other than t. Since agents�preferences are uniquely

determined by the values of the aggregators (Def. 6), the preferences induced by states �

and �0 only di¤er along the dimension of the period-t aggregator. The condition requires a

19These preferences are time-separable in the sense that each vti does not depend on the allocations chosen in
periods other than t. Function vti , however, may depend on previous signals.
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single-crossing condition for the corresponding outcomes to hold along this direction. From a

graphical viewpoint, this condition can be interpreted as follows: suppose that � and �0 are as

in De�nition 11. Then, if the SCF is aggregator-based and the environment satis�es SCC-1

(Def. 10), the di¤erence in payo¤s for f (�) and f (�0) as a function of the period-t aggregator

crosses zero at most once (Figure 1.b). If f is not aggregator based, allocations at periods � > t

may di¤er under f (�) and f (�0), shifting the curve �i;t (f (�) ; f (�0) ; �i;t). SCC-2 guarantees

that the single-crossing property is maintained under this shift (Figure 1.b).20

The economic intuition of SCC-2 is also straightforward. In static environments, single-

crossing conditions allow agents�types to monotonically sort themselves with respect to the

chosen allocation. By requiring a single-crossing condition to hold within each period, con-

dition SCC-1 (Def. 10) is the natural extension of the basic idea to a multi-period setting.

With aggregator based SCF, such period-by-period single-crossing condition su¢ ces to achieve

full implementation in the dynamic mechanism (Proposition 3). Without the aggregator based

assumption, letting types at time t sort themselves relative to period-t allocations does not

guarantee that the required monotonicity also holds when forward-looking intertemporal con-

siderations are taken into account. SCC-2 requires precisely such intertemporal e¤ects to be

su¢ ciently well-behaved that they do not upset the single-crossing property at time t. In this

sense, SCC-2 can be seen as consisting of two components: the �rst is a standard single-crossing

condition �within�each period (as in SCC-1); the second component requires the intertemporal

e¤ects, which may alter the �within period�incentives, not to be too strong.21

20Within the special case of time-separable preferences, SCC-2 is indeed quite permissive. For instance, the
preferences in equation (15) satisfy SCC-2 for any choice of F : R! R.
21 In a Markovian setting, Pavan et al. (2013) introduce a single-crossing condition with a similar �avour,

also to ensure that types sort themselves monotonically at every period, taking into account the intertemporal
incentives. The latter are de�ned in terms of the agents�beliefs about the future, as entailed by the underlying
stochastic process, and therefore have the Markovian property that at every period they are pinned down by the
current signal �i;t. This property of agents�beliefs is key to the tractability of Markovian settings. As explained
in footnote 17, however, this property need not hold in the present, belief-free, setting: even if �ti were pinned
down by the period-t signals, beliefs about the future would still be unrestricted and may depend, for instance,
on previous signals. The two conditions therefore are very di¤erent at a formal level (also, the condition in
Pavan et al. (2013) requires that preferences are di¤erentiable, which is not assumed here.) Nonetheless, both

20



The next Proposition and Corollary state the main result of the paper.

Proposition 4 (Full Implementation) In an environment with monotone aggregators (Def.
6) satisfying the contraction property (Def. 8), if a SCF f is Strictly EPIC (De�nition 1) and

satis�es SCC-2 (Def. 11), then R� = fscg :

Corollary 2 Since sc 2 S�, if the assumptions of Propositions 3 or 4 are satis�ed, f is fully
robustly implementable by the direct mechanism.

5.3.3 Transferable Utility

A special case of interest is that of additively separable preferences with transferable utility:

For each t = 1; :::; T , the space of allocations is �t = Qt � (�ni=1�i;t), where Qt is the set of
common components of the allocation and �i;t � R is the set of transfers to agent i (i�s private
component). Maintaining the restriction that the environment admits monotone aggregators,

agent i�s preferences are as follows: For each �� = (qt; �1;t; :::; �n;t)
T
t=1 2 � and �� 2 �;

ui (�
�; ��) =

TX
t=1

vti
�
(q� )

t
�=1 ; �i;t

�
yt (��)

��
+ �i;t,

where for each t = 1; :::; T , vti :
�
�t�=1Q�

�
� R! R is the period-t valuation of the common

component. Notice that functions vti :
�
�t�=1Q�

�
� R! R are de�ned over the entire history

(q1; :::; qt): this allows period-t valuation of the current allocation (qt) to depend on the previous

allocative decisions (q1; :::; qt�1). This allows us to accommodate the path-dependencies in

preferences discussed above.22

In environments with transferable utility, it is common to de�ne a social choice rule for

the common component, �t : Y t ! Qt (t = 1; :::; T ), while transfer schemes �i;t : Y t ! R
(i = 1; :::; n and t = 1; :::; T ) are speci�ed as part of the mechanism. Not assuming transferable

utility, social choice functions above were de�ned over the entire allocation space (ft : Y t !
�t), they thus include transfers in the case of transferable utility. The transition from one

approach to the other is straightforward. Any given pair of choice rule and transfer scheme�
�t; (�i;t)

n
i=1

�T
t=1

trivially induces a social choice function f�;�t : Y t ! �t (t = 1; :::; T ) in the

setup above: for each t and yt 2 Y t, f�;�t (yt) =
�
�t
�
yt
�
;
�
�i;t
�
yt
��n
i=1

�
.

It is easy to verify that, in environments with transferable utility, if agents�preferences over

the common component Q� = �Tt=1Qt satisfy SCC-1, and � : �! Q is aggregator-based, then

for any transfer scheme
�
�i;t
�
yt
��n
i=1
, the SCF f�;� satis�es SCC-2. More generally, if � and

agents�preferences over Q� satisfy SCC-2, then f�;� satis�es SCC-2 for any transfer scheme�
�i;t
�
yt
��n
i=1
. Given this, the following corollary of Proposition 4 is immediate:

conditions ensure that types sort themselves monotonically with respect to the future outcomes. This is useful
for applying recursive techniques, which is done here in distribution-free environments, and by Pavan et al.
(2013) in Markovian settings.
22The special case of path-independent preferences corresponding to the example in section 5.2 is such that

period-t valuation are functions vti : Qt � R! R.
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Corollary 3 In environments with monotone aggregators of information and transferable util-
ity, if agents�preferences over Q� and � : �! Q� satisfy: (i) the contraction property; (ii) the

single crossing condition SCC-2; and (iii) there exist transfers � that make � strictly ex-post

incentive compatible. Then: f�;� is fully robustly implemented.

6 Concluding Remarks

Alternative Approaches to Robustness. As already discussed in Section 3, the belief-free

approach has been criticized for imposing an unnecessarily demanding notion of robustness.

Nonetheless, it has provided an important theoretical benchmark, particularly to understand

the methodological aspects of robust mechanism design. The analysis of belief-free full im-

plementation has highlighted an important connection between robust mechanism design and

strategic uncertainty, and identi�ed rationalizability as a central concept in robust mechanism

design.23 The insights of the belief-free approach have also been extended by a more recent

literature that studies environments in which the designer has some, albeit limited, information

on agents�beliefs. Artemov, Kunimoto and Serrano (2013) pursue this approach within the

context of virtual implementation, Kim and Penta (2013) and Lopomo, Rigotti and Shannon

(2013) from the viewpoint of partial implementation, and Ollár and Penta (2014) in terms of

full implementation. The latter paper also shows that the insights of the belief-free literature

can be usefully adapted to address both more realistic notions of robustness, as well as to

obtain full implementation via simple mechanisms, which consist of standard transfer schemes.

Another strand of the literature has pursued a di¤erent, �second best�approach (e.g., Börgers

and Smith (2012a,b), and Yamashita (2012, 2013b, 2013c)). Börgers and Smith (2012a,b), for

instance, show that letting the SCF depend on agents�beliefs may be useful in situations in

which the �rst-best is belief-free but unattainable. Exploring these insights in dynamic settings

seems a promising and important direction for future research, but understanding the limita-

tions of the belief-free approach and the more fundamental methodological problems seems a

natural �rst step to extend the robust approach to dynamic settings.

A �Backward Induction Reasoning�Approach. The methodological results in Section

5.1 are based on solution concepts developed in Penta (2012b), which argues that the back-

wards procedure R� characterizes the predictions of backward induction reasoning in games

with incomplete information. Two alternative epistemic characterizations are provided, in

terms of �common belief in future rationality�(CBFR), and in terms of �common belief in ra-

tionality and in belief persistence�(CBRBP).24 Intuitively, CBFR represents the idea, typical

of backward induction reasoning, that deviations are unintentional, or �mistakes�(a connection

23The connection between structural and strategic uncertainty, relevant to robust mechanism design, has
emerged in several contexts. See, for instance, Bergemann and Morris (2009a), Oury and Tercieux (2012) and
Yamashita (2013a). From a general game theoretic viewpoint, see Battigalli and Siniscalchi (2003), Weinstein
and Yildiz (2007, 2013) and Penta (2012a,b, 2013).
24Perea (2012) independently introduced a related solution concept for complete information games, and

provided a similar epistemic characterization to CBFR.
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to �trembles�is also explored). Under CBFR, players start out with common belief in ratio-

nality. If, at any point in the game, an unexpected move is observed, players may accept that

the deviation was a mistake and maintain common belief in rationality for the continuation

game.25 CBRBP instead represents the idea, also inherent to backward induction reasoning,

that players never change their beliefs about the continuation strategies of the opponents, even

in the face of evidence that contradicts beliefs on earlier components of those strategies. In this

sense, this paper has pursued a �backward induction�approach. The related papers by Müller

(2012a,b) instead adopt a solution concept based on the assumption of Common Strong Belief

in Rationality (CSBR), which is a forward induction concept (Battigalli and Siniscalchi, 2002).

Forward induction, however, is highly sensitive to the common knowledge assumptions, which

may be problematic from the viewpoint of robustness. For instance, applying CSBR under

common knowledge of no belief-restrictions (as formalized in belief-free models), need not be

the same as applying it to all possible type spaces (cf. Müller (2012a,b)).

Dynamic Mechanisms in Static Environments. Consider an environment in which

agents obtain all the relevant information before the planner has to make a decision. Al-

though static mechanisms may be a viable option, the designer may still have reasons to adopt

a dynamic mechanism (e.g. an ascending auction). In an environment with complete informa-

tion, Bergemann and Morris (2007) recently argued that dynamic mechanisms may improve

on static ones by reducing agents�strategic uncertainty: They show that applying backward

induction to an ascending auction guarantees full robust implementation for a larger set of

parameters than applying rationalizability to its sealed-bid counterpart. Using the approach

of this paper, it can be shown that this result is not robust to the introduction of incomplete

information. The reason is that, under a backward induction logic, unexpected past reports

may be interpreted as possibly unintentional mistakes, and as such they may be attritubed to

any type of the opponents. If, as in belief-free settings, all restrictions on beliefs are relaxed,

backward induction has essentially no bite in the ascending auction, because histories to do

not �robustly�convey information. The case for dynamic mechanisms in static environments

therefore must rely on more complicated mechanisms or on stronger epistemic assumptions,

which enable agents to draw stronger inferences from past histories. Müller (2012a) obtains

some results in this sense, under CSBR. CSBR, however, is a strong epistemic assumption,

which implies sophisticated forward induction reasoning. Also, Müller (2012a) adopts non-

direct mechanisms with properties similar to the unbounded mechanisms used in the classical

literature on implementation (see references in footnote 9). These mechanisms have been crit-

icized, among others, by Jackson (1992).

25The view of deviations as �mistakes�contrasts with the logic of forward induction, which requires instead
that unexpected moves be rationalized (if possible) as purposeful deviations.
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Appendix

A Topological structures and Conditional Probability Systems.

A.1 Topological structures.

Sets �i;t � Rni;t and Mi;t � R�i;t are non-empty and compact, for each i and t (Sections 2
and 3). Let nt =

P
i2N ni;t and �t =

P
i2N �i;t. For each h

t
i, � < t, let ��

�
hti
�
denote the

tuple (�i;� ;m� ) at period � along history hti. For each k 2 N , let d(k) denote the Euclidean

metric on Rk. We endow the sets Hi with the following metrics, di(i 2 N), de�ned as: For

each hti; h
�
i 2 Hi (w.l.o.g.: let � � t) s.t. hti = ((�i;k;mk)

t�1
k=1; �

t
i) and ĥ

�
i = ((�̂i;k;mk)

��1
k=1; �̂

t
i),

di
�
hti; ĥ

�
i

�
=

t�1X
k=1

d(ni;k+�k)

�
�k
�
hti
�
; �k

�
ĥ�i

��
+ dni;t

�
�i;t; �̂i;t

�
+

�X
k=t+1

1:

It can be checked that
�
Hi; di

�
are complete, separable metric spaces. Sets of strategies are

endowed with the supmetrics dSi de�ned as:

dSi
�
si; s

0
i

�
=

TX
t=1

 
sup

hti2Ht�1�Y ti
d�i;t

�
si
�
hti
�
; s0i
�
hti
��!

Under these topological structures, lemma 2.1 in Battigalli (2003) implies that Si (h) is

closed for every h, hence the CPSs introduced in the next section are well-de�ned.

A.2 Conditional Probability Systems

Let 
 be a metric space and A its Borel sigma-algebra. Fix a non-empty collection of subsets

C � An;, to be interpreted as �relevant hypothesis�. A conditional probability system (CPS

hereafter) on (
;A; C) is a mapping � : A� C ! [0; 1] such that:

Axiom 1 For all B 2 C, � (B) [B] = 1

Axiom 2 For all B 2 C, � (B) is a probability measure on (
;A).

Axiom 3 For all A 2 A, B;C 2 C, if A � B � C then � (B) [A] � � (C) [B] = � (C) [A].

The set of CPS on (
;A; C), denoted by �C (
), can be seen as a subset of [� (
)]C

(i.e. mappings from C to probability measures over (
;A)). CPS�s will be written as � =
(� (B))B2C 2 �C (
). The subsets of 
 in C are the conditioning events, each inducing beliefs

over 
; �(
) is endowed with the topology of weak convergence of measures and [� (
)]C is

endowed with the product topology. Below, for each player i, we will set 
 = �� S in games

with payo¤ uncertainty (or 
 = ��� if the game is appended with a model of beliefs). The set
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of conditioning events is naturally provided by the set of private histories Hi: for each private
history hti =

�
ht�1; yti

�
2 Hi, the corresponding event

�
hti
�
is de�ned as:

�
hti
�
=
�
yti
	
�
�
�T�=t+1�i;�

�
���i � S

�
ht�1

�
:

Under the maintained assumptions and topological structures, sets
�
hti
�
are compact for

each hti, thus �
Hi (
) is a well-de�ned space of conditional probability systems. With a slight

abuse of notation, we will write �i
�
hti
�
instead of �i

��
hti
��
:

B The Backwards Procedure

To formally de�ne the backwards procedure, we need extra notation for continuation strategies:

For each hti, S
hti
i denotes the set of player i�s strategies in the subform starting from hti. For each

public history ht�1, let Sh
t�1
i =

n
sh

t�1
i =

�
yti ; si

�
yti2Y ti

: si 2 S
(ht�1;yti)
i

o
: an element of Sh

t�1
i is

a function assigning to each yti 2 Y ti a continuation strategy si 2 S
hti
i , where h

t
i =

�
ht�1; yti

�
.

For each si 2 Si and each ht�1 2 H, sijht�1 2 Sh
t�1
i denotes the continuation of si

starting from ht�1. The notation gsjh
t�1
(�) refers to the terminal history induced by strategy

pro�le s from the public history ht�1 if the realized state of nature is �. Strategic-form payo¤

functions can be de�ned for continuations from a given public history: for each h 2 H and each

(s; �) 2 S ��, Ui (s; �;h) = ui
�
gsjh (�) ; �

�
. For the initial history �, it will be written Ui (s; �)

instead of Ui (s; �;�).

For any hti =
�
ht�1; yti

�
and � 2 �

��
yti
	
�
�
�T�=t+1�i:�

�
���i � Sh

t�1
�i

�
, let BRi

�
�;hti

�
�

S
hti
i denote the set of continuation strategies from hti that are best response to conjectures �

over the payo¤ states and the opponents�continuation strategies. That is:

BRi
�
�;hti

�
= arg max

si2S
ht
i

i

Z
(�;s�i)2��Sh

t�1
�i

Ui
�
si; s�i; �;h

t�1� � d�
We can now introduce the backwards procedure formally. The de�nition is recursive, start-

ing from the last stage and proceeding backwards:

� [t = T] For each hTi =
�
hT�1; yTi

�
, let R0i

�
hTi
�
= S

hTi
i , and for each k = 1; 2; :::, let

Rk�1j

�
hT�1

�
=
n
(�j ; sj) : sj 2 Rk�1j

�
hT�1; yTj (�j)

�o
,

Rk�1�i
�
hT�1

�
= �j 6=iRk�1j

�
hT�1

�
,

Rki
�
hT�1; yTi

�
=

(
si 2 Rk�1i

�
hT�1; yTi

�
:
(R.1) 9� 2 �

��
yTi
	
���i �Rk�1�i

�
hT�1

��
,

(R.2) si 2 BRi
�
�;hT�1; yTi

� )

Ri
�
hT�1; yTi

�
=

1\
k=1

Rki
�
hT�1; yTi

�
and Ri

�
hT�1

�
=
n�
yTi ; si

�
: si 2 Rk�1i

�
hT�1; yTi

�o
:

Notice that Ri
�
hT�1

�
consists of pairs of types �i = yTi and continuation strategies
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si 2 S
(hT�1;yTi )
i , hence Ri

�
hT�1

�
� Sh

T�1
i : an element of Ri

�
hT�1

�
therefore is a function

from types to actions in the last stage following public history hT�1.

� [t = T� 1; :::0] For each hti =
�
ht�1; yti

�
, let

R0i
�
ht�1; yti

�
=
n
si 2 S

hti
i : 8ht s.t. ht�1 � ht,

8yt+1i =
�
yti ; �i;t+1

�
, sij

�
ht; yt+1i

�
2 Ri

�
ht; yt+1i

�	
;

and for each k = 1; 2; :::, let

Rk�1j

�
ht�1

�
=
n
(�j ; sj) : sj 2 Rk�1j

�
ht�1; ytj (�j)

�o
,

Rk�1�i
�
ht�1

�
= �j 6=iRk�1j

�
ht�1

�
,

Rki
�
ht�1; yti

�
=

(
si 2 Rk�1i

�
ht�1; yti

�
:
(R.1) 9� 2 �

��
yti
	
�
�
�T�=t+1�i:�

�
���i �Rk�1�i

�
ht�1

��
,

(R.2) si 2 BRi
�
�;ht�1; yti

� )

Ri
�
ht�1; yti

�
=

1\
k=1

Rki
�
ht�1; yti

�
and Ri

�
ht�1

�
=
n�
yti ; si

�
: si 2 Rk�1i

�
ht�1; yti

�o
:

Finally: R�i =
�
si 2 Si : sijy1i 2 Ri

�
y1i
�
for each y1i 2 Y 1i

	
.

C Proof Proposition 2

The proof of Proposition 2 is based on a solution concept for belief-free games in extensive form,

Backwards Extensive Form Rationalizability (BR). Proposition 2 obtains by �rst showing that
BR characterizes the set of IPE strategies (Proposition 5) and then that BR can be computed

via the backwards procedure R� (Proposition 6).

Backwards Extensive Form Rationalizability. Similar to rationalizability, BR is a non-

equilibrium solution concept. Agents form conjectures about everyone�s behavior, which may

or may not be consistent with each other. To avoid confusion, we refer to this kind of beliefs

as �conjectures�, retaining the term �beliefs� only for those introduced in Section 2. Agent

i�s conjectures are represented by CPS �i =
�
�i
�
hti
��
hti2Hi

2 �Hi (�� S). Given a CPS

�i 2 �Hi (�� S) and a history hti =
�
ht�1; yti

�
, strategy si expected payo¤ at hti, given �

i, is

de�ned as:

Ui
�
si; �

i;hti
�
=

Z
��S�i

Ui
�
si; s�i; �;h

t�1� � dmarg��S�i�i �hti� . (16)

Strategy si is sequentially rational with respect to �i 2 �Hi (�� S), written si 2 ri
�
�i
�
,

if and only if for each hti 2 Hi and each s0i 2 Si, Ui
�
si; �

i;hti
�
� Ui

�
s0i; �

i;hti
�
: If si 2 ri

�
�i
�
,

we say that conjectures �i �justify�strategy si.
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De�nition 12 For each i 2 N , let BR0i = Si. De�ne recursively, for k = 1; 2; :::;BRk�1i =

�i=1;:::;nBRk�1i , BRk�1�i = �j 6=iBRk�1 and

BRki =

8>>>>>>>>>>><>>>>>>>>>>>:
ŝi 2 BRk�1i :

9�i 2 �Hi (�� S) s.t.
(1) ŝi 2 ri

�
�i
�

(2) supp
�
�i (�)

�
� �� fŝig � BRk�1�i

(3) for each hti =
�
ht�1; yti

�
2 Hi:

s 2 supp
�
margS�

i
�
hti
��
implies:

(3.1) sijhti = ŝijhti, and
(3.2) 9s0�i 2 BRk�1�i : s0�ijht�1 = s�ijht�1

9>>>>>>>>>>>=>>>>>>>>>>>;
Finally, BR :=

T
k�0

BRk.

Proposition 5 Fix a game (E ;M). For each i: ŝi 2 BRi if and only if 9B = (Bi; �i)i2N ,

b̂i 2 Bi and (�̂; p̂) such that: (i) (�̂; p̂) is an IPE of (E ;M;B) and (ii) ŝi = �̂i

�
b̂i

�
:

Proof: Step 1: ((). Fix B, (�̂; p̂) and b̂i. For each hti 2 Hi, let P (�̂;p̂)i

�
b̂i; h

t
i

�
2

�(��B�i � S�i) denote the probability measure on � � B�i � S�i induced by p̂i
�
b̂i; h

t
i

�
and �̂�i. For each j, let

�Sj = fsj 2 Sj : 9bj 2 Bj s.t. sj = �̂j (bj)g ;

and for each h,

�Shj =
n
shj 2 Shj : 9s0j 2 �Sj s.t. s0j jh = shj

o
We will prove that �Sj � BRj for every j. For each hti =

�
yti ; h

t�1� 2 Hi, let 'htij : Sj !
Sj
�
hti
�
be a measurable function such that

'
hti
j (sj)

�
h�j
�
=

(
sj

�
h�j

�
if � � t

m�
j otherwise

where m�
j is the message (action) played by j at period � < t in the public history ht�1. Thus,

'
hti
j transforms any strategy in Sj into one that has the same continuation from hti, and that

agrees with hti for the previous periods. De�ne the mapping Lhti : ��B�i�S�i ! ��B�S
such that

Lhti (�; b�i; s�i) =
�
�; b̂i; b�i; '

hti
i

�
�̂i

�
b̂i

��
; '

hti
�i (s�i)

�
:

(In particular, L� (�; b�i; s�i) =
�
�; b̂i; b�i; �̂i(b̂i); s�i

�
.). De�ne the CPS �i 2 �Hi (��B � S)

such that, for any measurable E � ��B � S,

�i (�) [E] = P
(�̂;p̂)
i

�
b̂i; �

� h
L�1� (E)

i
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and for all hti 2 Hi s.t. �i
�
ht�1i

� �
hti
�
= 0, let

�i
�
hti
�
[E] = P

(�̂;p̂)
i

�
b̂i; h

t
i

� h
L�1
hti
(E)
i
:

(Conditional beliefs �i
�
hti
�
at histories hti s.t. �i

�
ht�1i

� �
hti
�
> 0 are determined via Bayesian

updating, from the de�nition of CPS. See appendix A.2). De�ne the CPS �i 2 �Hi (�� S)
s.t. 8hti 2 Hi, �i

�
hti
�
=marg��S�i

�
hti
�
. By construction, ŝi 2 ri

�
�i
�
. We only need to show

that conditions (2) and (3) in the de�nition of BR are satis�ed by �i. This part proceeds by

induction: The initial step, for k = 1, is trivial. Hence, �Sj � BR1j for every j. To complete the
proof, let (as inductive hypothesis) �Sj � BRkj for every j. Then �i constructed above satis�es
supp

�
�i (�)

�
� �� fŝig � BRk�i and

supp
�
marg

Sht�1�
i (�)

�
= supp

�
marg

Sht�1�
i
�
hti
��
� �Sh

t�1

thus ŝi 2 BRk+1i . This concludes the �rst part of the proof.

Step 2: ()). Let B be such that for each i, Bi = BRi and let strategy �̂i : Bi ! Si be the

identity map. De�ne the map Mi;� : �� S ! ��B�i s.t.

Mi;� (�; si; s�i) =
�
�; �̂�1�i (s�i)

�
Notice that, for each i and si 2 BRi, 9�si 2 �Hi (�� S) s.t.:

1. si 2 ri (�si)
2. for all hti 2 Hi:

sj 2 supp
�
margSj�

si
�
hti
��
) 9s0j 2 BRj : sj jht�1 = s0j jht�1:

Hence, for each hti 6= �, we can de�ne the map �si;hti : supp
�
margS�i�

si
�
hti
��

! BR�i
that satis�es �si;hti (s�i) jh

t�1 = s�ijht�1. Let msi;hti
:= �̂�1�i � �si;hti . De�ne maps Msi;hti

:

�� supp
�
margS�

si
�
hti
��
! ��B�i

Msi;hti
(�; si; s�i) =

�
�;mhti

(s�i)
�
:

Let beliefs �i : Bi ! �(��B�i) be s.t. for every measurable E � ��B�i

�i (bi) [E] = ��̂i(bi) (�)
h
M�1
i;� (E)

i
Let beliefs p̂i be derived from �̂ and the initial beliefs �i via Bayesian updating whenever

possible. At all other histories hti 2 Hi, for every measurable E � ��B, set

p̂i
�
bi; h

t
i

�
[E] = ��̂i(bi)

�
hti
� h
M�1
�̂i(bi);hti

(E)
i
:

By construction, (�̂; p̂) is an IPE of (E ;M;B).�
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Next we show that BR can be computed via the backwards procedure R� introduced above.

Proposition 6 BRi = R�i for each i.

Proof: Step 1 (R�i � BRi): let ŝi 2 R�i . Then, for each hti =
�
ht�1; yti

�
, sijhti 2

Ri
�
ht�1; yti

�
(equivalently: sh

t�1
i 2 Ri

�
ht�1

�
). Notice that for each ht�1 and sh

t�1
i 2 Ri

�
ht�1

�
,

there exists si 2 R�i such that sijht�1 = sh
t�1
i . Thus, for each j and ht�1, we can de�ne

measurable functions �h
t�1
j : Rj

�
ht�1

�
! R�j such that: 8 sh

t�1
j 2 Rj

�
ht�1

�
�h

t�1
j

�
sh

t�1
j

�
jht�1 = sh

t�1
j .

(Functions �h
t�1
j assign to strategies in Rj

�
ht�1

�
, strategies in R�j with the same continuation

from ht�1.) As usual, denote by �h
t�1
�i the product �j 6=i�h

t�1
j .

For each ht�1, let 'h
t�1
j : Sj ! Sj

�
ht�1

�
be a measurable function such that

'h
t�1
j (sj)

�
h�j
�
=

(
sj

�
h�j

�
if � > t

m�
j otherwise

where m�
j is the message (action) played by j at period � < t in the public history ht�1.

(As usual, denote by 'h
t�1
�i the product �j 6=i'h

t�1
j .)

For each ht�1, de�ne the measurable mapping %h
t�1
�i : R�i

�
ht�1

�
! S�i

�
ht�1

�
such that

8sht�1�i 2 R�i
�
ht�1

�
,

%h
t�1
�i

�
sh

t�1
�i

�
= 'h

t�1
�i � �ht�1�i

�
sh

t�1
�i

�
:

It will be shown that: for each k = 0; 1; :::, ŝi 2 Rki (�) implies ŝi 2 BRki .
The initial step is trivially satis�ed (BR0i = Si = R0i (�)). For the inductive step, suppose

that the statement is true for n = 0; :::; k � 1: Since ŝi 2 Rki (�), for each hti =
�
ht�1; yti

�
there

exists �h
t
i 2 �

�
�� Sht�1�i

�
that satis�es

ŝijhti 2 arg max
s0i2S

ht
i

i

Z
��Sht�1�i

Ui
�
s0i; s�i; �;h

t�1� � d�hti ,
and such that ��

�
��Rk�1�i (�)

�
= 1 and for all hti 6= �,

�h
t
i
��
yti
	
�
�
�T�=t+1�i;�

�
���i �R�i

�
ht�1

��
= 1:

Now, consider the CPS �i 2 �Hi (�� S) such that, for all measurable E � �� S�i,

�i (�) [fŝig � E] = �� (E) .

By de�nition of CPS, �i (�) de�nes �
�
hti
�
for all hti s.t. �

i (�)
�
hti
�
> 0. Let hti be such that

�i (�)
�
ht�1i

�
> 0 and �i (�)

�
hti
�
= 0. De�ne the measurable mapping Mhti

: � � Rh
t�1
�i !
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�� S
�
ht�1

�
such that for all

�
�; sh

t�1
�i

�
2 �� S

�
ht�1

�
,

Mhti

�
�; sh

t�1
�i

�
=
�
�; 'h

t�1
i (ŝi) ; %

ht�1
�i

�
sh

t�1
�i

��
and set �i

�
hti
�
equal to the pushforward of �h

t
i under Mhti

, i.e. such that for every measurable

E � �� S
�i
�
hti
�
[E] = �h

t
i

h
M�1
hti
(E)
i
.

Again, by de�nition of CPS, �i
�
hti
�
de�nes � (h�i ) for all h

�
i � hti that receive positive

probability under �i
�
hti
�
. For other histories, proceeds as above, setting �i (h�i ) equal to the

pushforward of �h
�
i under Mh�i

, and so on.

By construction, ŝi 2 ri
�
�i
�
(condition 1 in the de�nition of BRki ). Since by construction

�i (�) [�� fŝig �Rk�1�i (�)] = 1, under the inductive hypothesis �
i (�) [�� fŝig � BRk�1�i ] = 1

(condition 2 in the de�nition of BRki ). From the de�nition of 'h
t�1
i (ŝi), CPS �i satis�es

condition (3.1) at each hti. From the de�nition of %h
t

�i, under the inductive hypothesis, �
i

satis�es condition (3.2).

Step 2 (BRi � R�i ): let ŝi 2 R
�
i and �

i 2 �Hi (�� S) be such that ŝi 2 ri
�
�i
�
. For each

hti =
�
ht�1; yti

�
, de�ne the mapping  hti : S�i ! Sh

t�1
�i s.t.  hti (s�i) jh

t�1 = s�ijht�1 for each
s�i 2 S�i. (Function  hti transforms each strategy pro�le of the opponents into its continuation
from ht�1.) De�ne also 	hti : �� S ! �� Sht�1�i such that

	hti (�; si; s�i) =
�
�;  hti (s�i)

�
For each hti 2 Hi, let �h

t
i 2 �

�
�� Sht�1�i

�
be such that for every measurable E � ��Sht�1�i

�h
t
i [E] = �i

�
hti
� h
	�1
hti
(E)
i
.

so that the implied joint distribution over payo¤ states and continuation strategies s�ijht�1

is the same under �i
�
�;hti

�
and �h

t
i . We will show that ŝijhti 2 Ri

�
ht�1; yti

�
for each hti =�

ht�1; yti
�
. Notice that, by construction,

ŝijhti 2 arg max
si2S

ht
i

i

Z
Ui
�
si; s�i;h

t
i

�
� d�hti .

The argument proceeds by induction on the length of histories.

Initial Step (T � 1). Fix history hTi =
�
hT�1; yTi

�
: for each k, if ŝi 2 BRki , then ŝijhTi 2

Rki
�
hT�1; yTi

�
. For k = 0, it is trivial. For the inductive step, let �h

T
i be de�ned as above:

under the inductive hypothesis, �h
T
i

�
�i �Rk�1�i

�
hT�1

��
= 1 (condition 1), while ŝi 2 ri

�
�i
�

implies that condition (2) is satis�ed.

Inductive Step: suppose that for each � = t+1; :::; T , ŝi 2 BRi, implies ŝijh�i 2 Ri
�
h��1; y�

�
for each h�i =

�
h��1; y�i

�
. We will show that for each k, hti =

�
ht�1; yti

�
, ŝijhti 2 Rki

�
ht�1; yt

�
.
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We proceed by induction on k: under the inductive hypothesis on � , ŝijhti 2 R0i
�
ht�1; yt

�
. For

the inductive step on k, suppose that ŝi 2 BRi, implies ŝijhti 2 Rni
�
ht�1; yt

�
for n = 0; :::; k�1,

and suppose (as contrapositive) that ŝijhti =2 Rki
�
ht�1; yt

�
. Then, for �h

t
i de�ned as above, it

must be that supp
�
�h

t
i

�
* ��Rk�1�i

�
ht�1

�
, which, under the inductive hypothesis on n, implies

that 9s�i 2supp
�
margS�i�

i
�
hti
��
s.t. @s0�i 2 BR�i : s0�ijht�1 = s�ijht�1, which contradicts

that �i justi�es ŝi in BRi.�

Proposition 2 follows from propositions 5 and 6. QED.

D Implementation Results

D.1 Proof of Proposition 1

As explained in the main text, the �only if�part follows from Bergemann and Morris (2005).

For the �if�part, let f be EPIC, and �x a model of beliefs B = (Bi; �i)i2N . It will be shown
that there exists a truthful PBE of

�
E ;Mf ;B

�
. Let �� be a �strongly truthful�pro�le, in the

sense that for every i, and for every hti, period-t signal �i;t is reported truthfully. Let belief

system
�
pi
�
i2N be consistent with �� and such that: 8i 2 N , 8bi 2 Bi, pi (bi; �) = �i (bi) and

for each hti =
�
ht�1; yti

�
2 Hi, where ht�1 =

�
~yi; ~y

t�1
�i
�
,

supp
�
marg��ip

i
�
bi; h

t
i

��
�
�
~yt�i
	
�
�
�T�=t+1��i;�

�
: (17)

That is, at unexpected histories, each i believes that the opponents have reported truthfully:

If unexpected reports were observed, player i revises his beliefs about the opponents�types,

not their behavior. Notice that if Ui (s�; �) � Ui
�
s0i; s

�
�i; �

�
for all � (cf. Def. 1), then for any

�i 2 �(��B�i),Z
��B�i

Ui (�
�; �; b�i; bi; �) � d�i �

Z
��B�i

Ui
�
s0i; �

�
�i; �; b�i; bi; �

�
� d�i: (18)

Hence, the incentive compatibility constraints are satis�ed at the beginning of the game, i.e.

for �i = pi (bi; �), and so at all histories �on the path�. At other histories, the belief system

satis�es (17), which implies that for every hti,Z
��B�i

Ui
�
��; �; b�i; bi; h

t
i

�
� dpi

�
bi; h

t
i

�
=

Z
��B�i

Ui (�
�; �; b�i; bi; �) � dpi

�
bi; h

t
i

�
andZ

��B�i
Ui
�
s0i; �

�
�i; �; b�i;h

t
i

�
� dpi

�
bi; h

t
i

�
=

Z
��B�i

Ui
�
s0i; �

�
�i; �; b�i; bi; �

�
� dpi

�
bi; h

t
i

�
:

But then, for each hti and letting �
i = pi

�
bi; h

t
i

�
, equation (18) implies that:Z

��B�i
Ui
�
��; �; b�i; bi; h

t
i

�
� dpi

�
bi; h

t
i

�
�
Z
��B�i

Ui
�
s0i; �

�
�i; �; b�i; bi; h

t
i

�
� dpi

�
bi; h

t
i

�
:
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That is, �� is sequentially rational with respect to p. By construction, (p; ��) is a truthful PBE

of the Bayesian game.�

D.2 Proof of Proposition 3.

By contradiction, suppose R� = D 6= fscg. By continuity of ui and compactness of �, D
�
ht
�

is compact for each ht. It will be shown that for each t and for each public history ht�1,

s
�
D
�
ht�1

��
= sc

�
ht�1

�
, contradicting the absurd hypothesis. The proof proceeds by induction

on the length of the history, proceeding backwards from public histories hT�1 to the empty

history h0.

Initial Step: [It will be proven that s
�
D
�
hT�1

��
= sc

�
hT�1

�
for each hT�1]. Suppose, by

contradiction, that 9hT�1 =
�
~yT�1; xT�1

�
: s
�
D
�
hT�1

��
6= sc

�
hT�1

�
. Then, by the contrac-

tion property,

9yTi and �0i;T 2 Di
�
hT�1; yTi

�
: �0i;T 6= sci

�
hT�1; yTi

�
such that:

sign
�
sci
�
hT�1; yTi

�
� �0i;T

�
= sign

�
�i;T

�
yTi ; y

T
�i
�
� �i;T

�
~yT�1; �0i;t; �

0
�i;t
��

for all yT�i =
�
yT�1�i ; ��i;T

�
and �0�i;T 2 D�i

�
hT�1; yT�i

�
:

Fix such yTi and �
0
i;T 6= sci

�
hT�1; yTi

�
, and suppose that sci

�
hT�1; yTi

�
> �0i;T . De�ne:

�
�
hT�1; yTi

�
:= min
(yT�i;�0�i;T )2Y T�i�D�i(hT�1;yT�i)

�
�i;T

�
yTi ; y

T
�i
�
� �i;T

�
~yT�1; �0i;t; �

0
�i;t
��

(19)

(by compactness of Y T and D
�
hT�1

�
, and continuity of �i;T , �

�
hT�1; yTi

�
is well-de�ned).

Also, from sci
�
hT�1; yTi

�
> �0i;T and the Contraction Property, �

�
hT�1; yTi

�
> 0.

For any " > 0, let

 
�
hT�1; yTi ; �

0
i;T ; "

�
= max
��i;T2��i;T

�
�i;T

�
~yT�1; �0i;T + "; ��i;T

�
� �i;T

�
~yT�1; �0i;T ; ��i;T

�	
(20)

(again, compactness of ��i;T guarantees that  (�) is well-de�ned). Since �i;T is strictly in-
creasing in �i;T ,  

�
hT�1; yTi ; �

0
i;T ; "

�
is increasing in " and  

�
hT�1; yTi ; �

0
i;T ; "

�
! 0 as "! 0.

Let
�
ft
�
~yt
��T�1
t=1

= xT�1. From strict EPIC, we have that for each ",

vi
�
xT�1; fT

�
~yT�1; �0i;T + "; ��i;T

�
; �i;T

�
~yT�1; �0i;T + "; ��i;T

�
; �i;�T

�
~yT�1

��
> vi

�
xT�1; fT

�
~yT�1; �0i;T ; ��i;T

�
; �i;T

�
~yT�1; �0i;T + "; ��i;T

�
; �i;�T

�
~yT�1

��
and

vi
�
xT�1; fT

�
~yT�1; �0i;T + "; ��i;T

�
; �i;T

�
~yT�1; �0i;T ; ��i;T

�
; �i;�T

�
~yT�1

��
< vi

�
xT�1; fT

�
~yT�1; �0i;T ; ��i;T

�
; �i;T

�
~yT�1; �0i;T ; ��i;T

�
; �i;�T

�
~yT�1

��
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Thus, by continuity, there exists ai;T (") such that

�i;T
�
~yT�1; �0i;T ; ��i;T

�
< ai;T (") < �i;T

�
~yT�1; �0i;T + "; ��i;T

�
(21)

such that

vi
�
xT�1; fT

�
~yT�1; �0i;T + "; ��i;T

�
; ai;T (") ; �i;�T

�
~yT�1

��
= vi

�
xT�1; fT

�
~yT�1; �0i;T ; ��i;T

�
; aT (") ; �i;�T

�
~yT�1

��
From single-crossing condition SCC-1 (Def. 10),

vi
�
xT�1; fT

�
~yT�1; �0i;T + "; ��i;T

�
; a�; �i;�T

�
~yT�1

��
> vi

�
xT�1; fT

�
~yT�1; �0i;T ; ��i;T

�
; a�; �i;�T

�
~yT�1

��
whenever a� > aT (")

Thus, to reach the contradiction, it su¢ ces to show that for any yT�i 2 Y T�i, �i;T
�
yTi ; y

T
�i
�
>

ai;T ("): If this is the case, reporting �0i;T is (conditionally) strictly dominated by reporting

�0i;T + " at hTi =
�
hT�1; yTi

�
, hence it cannot be that Di = R�i and �

0
i;T 2 Di

�
hT�1; yTi

�
. To

this end, it su¢ ces to choose " su¢ ciently small that

 
�
hT�1; yTi ; �

0
i;T ; "

�
< �

�
hT�1; yTi

�
(22)

and operate the substitutions as follows:

�i;T
�
yTi ; y

T
�i
�
� �i;T

�
~yT�1; �0i;T ; �

0
�i;T

�
+ �

�
hT�1; yTi

�
� �i;T

�
~yT�1; �0i;T + "; �

0
�i;T

�
+ �

�
hT�1; yTi

�
�  

�
hT�1; yTi ; �

0
i;T ; "

�
> �i;T

�
~yT�1; �0i;T + "; �

0
�i;T

�
> ai;T (")

(the �rst inequality follows from (19), the second from (20), the third from (22) and the fourth

from (21)). Thus: �i;T
�
yTi ; y

T
�i
�
> ai;T (") for any yT�i. This concludes the initial step.

Inductive Step: [for t = 1; :::; T , it will be shown that if s [D (h� )] = sc [h� ] for all h� s.t.

� � t, then s
�
D
�
ht�1

��
= sc

�
ht�1

�
for all ht�1]. By contradiction, suppose that there exists

ht�1 =
�
~yt�1; xt�1

�
: s
�
D
�
ht�1

��
6= sc

�
ht�1

�
. Then, by the contraction property,

9yti and �0i;t 2 Di
�
ht�1; yti

�
: �0i;t 6= sci

�
ht�1; yti

�
such that:

sign
�
sci
�
ht�1; yti

�
� �0i;t

�
= sign

�
�i;t

�
yti ; y

t
�i
�
� �i;t

�
~yt�1; �0i;t; �

0
�i;t
��

for all yt�i =
�
yt�1�i ; ��i;t

�
and �0�i;t 2 D�i

�
ht�1; yt�i

�
:

Fix such yti and �
0
i;t 6= sci

�
ht�1; yti

�
, and suppose that sci

�
ht�1; yti

�
> �0i;t. Similar to the

initial step, it will be shown that there exists �"i;t = �0i;t + " for some " > 0 such that for

any conjecture consistent with D�i, playing �"i;t is strictly better than playing �
0
i;t at history

33



hti =
�
ht�1; yti

�
, contradicting the hypothesis that R� = D. For any " > 0, set �"i;t = �0i;t + ";

for each realization of signals ~�i =
�
~�i;k

�T
k=1
and opponents� reports ~m�i = ( ~m�i;k)

T
k=t, for

each � > t, denote by sci;�
�
�"i;t; ~m�i; ~�i

�
the action taken at period � if �"i;t is played at t,

sci is followed in the following stages, and the realized payo¤ type and opponents�messages

are ~�i and ~m�i, respectively. (By continuity properties 1 and 2 of the aggregators functions

(Def. 6) and de�nition of sc (Def. 7), sci;�
�
�"i;t; ~m�i; ~�i

�
is continuous in ", and converges to

sci;�

�
�0i;t; ~m�i; ~�i

�
as "! 0.)

For each realization ~�i =
�
~�i;k

�T
k=1

and reports ~m�i = ( ~m�i;k)
T
k=t and for each � > t ,

sci;�

�
�0i;t; ~m�i; ~�i

�
may be one of �ve cases (cf. equations 9-11):

1. sci;�
�
�0i;t; ~m�i; ~�i

�
2
�
�li;� ; �

h
i;�

�
, then

��i
�
y�i ; y

�
�i
�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; ŷ��i

�
for all y��i,

and we can choose " su¢ ciently small that sci;�
�
�"i;t; ~m�i; ~�i

�
2
�
�li;T ; �

h
i;T

�
, and hence

��i
�
y�i ; y

�
�i
�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�"i;t; ~m�i; ~�i

���
k=t+1

; ŷ��i

�
for all y��i.

2. sci;�
�
�0i;t; ~m�i; ~�i

�
= �hi;� and

��i
�
y�i ; y

�
�i
�
> ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; ŷ��i (h
�
i )

�
at ŷ��i (h

�
i ) de�ned as in equation (8), then we can choose " su¢ ciently small that

sci;�

�
�"i;t; ~m�i; ~�i

�
= �hi;T as well.

3. sci;�
�
�0i;t; ~m�i; ~�i

�
= �hi;� and

��i
�
y�i ; y

�
�i
�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; ŷ��i

�
for all y��i.

Then, either sci;�
�
�"i;t; ~m�i; ~�i

�
= �hi;� as well, or s

c
i;�

�
�"i;t; ~m�i; ~�i

�
2
�
�li;� ; �

h
i;�

�
, i.e.

��i
�
y�i ; y

�
�i
�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�"i;t; ~m�i; ~�i

���
k=t+1

; ŷ��i

�
for all y��i.
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In either case,

��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�"i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
for all y��i.

4. sci;�
�
�0i;t; ~m�i; ~�i

�
= �li;� and

��i
�
y�i ; y

�
�i
�
< ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; ŷ��i
�
hti
��

at ŷ��i
�
hti
�
de�ned as in equation (8), then we can choose " su¢ ciently small that

sci;�

�
�"i;t; ~m�i; ~�i

�
= �li;T as well.

5. sci;�
�
�0i;t; ~m�i; ~�i

�
= �li;� and

��i
�
y�i ; y

�
�i
�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
for all y��i:

Then, either sci;�
�
�"i;t; ~m�i; ~�i

�
= �li;� as well, or s

c
i;�

�
�"i;t; ~m�i; ~�i

�
2
�
�li;� ; �

h
i;�

�
, i.e.

��i
�
y�i ; y

�
�i
�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�"i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
for all y��i:

In either case,

��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�"i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
for all y��i:

That is, for each � > t, and for each
�
~�i; ~m�i

�
, in all �ve cases there exists �"

�
~�i; ~m�i; �

�
>

0 such that:

for all " 2
�
0; �"
�
~�i; ~m�i; �

��
, for all y��i

��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�"i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
:

Let �" = min
~�i; ~m�i;�

�"
�
~�i; ~m�i; �

�
(by compactness, this is well-de�ned and such that �" > 0).

Hence, if the continuation strategies are self-correcting, if f is aggregator-based, for any

" 2 (0; �"), reporting �"i;t or �0i;t at period t does not a¤ect the allocation chosen at periods
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� > t (this is because the opponents� self-correcting report cannot be a¤ected by i-

th components of the public history). Hence, for " 2 (0; �"), for each ��i 2 ��i, the

allocations induced by following sci at periods � > t and playing �0i;t or �
"
i;t at history h

t
i,

respectively �0 and �", are such that �0� = �"� for all � 6= t.

Consider types of player i, �0i,�
"
i 2 �i such that for each � < t, �0i;� = �"i;� = �̂i;� (where

�̂i;�are the types actually reported on the path); for all � > t, �i;� = sci;� as above; while at t

respectively equal to �"i;t and �
0
i;t. Thus, the induced allocations are �

" and �0 discussed above,

and for each � 6= t, �i;� (�") = �i;� (�
0) � âi;� .

From strict EPIC, we have that for any ��i

vi

�
�"; �i;t (�

"
i ; ��i) ; fâi;�g� 6=t

�
> vi

�
�0; �i;t (�

"
i ; ��i) ; fâi;�g� 6=t

�
and

vi

�
�"; �i;t

�
�0i; ��i

�
; fâi;�g� 6=t

�
< vi

�
�0; �i;t

�
�0i; ��i

�
; fâi;�g� 6=t

�
Thus, by continuity, there exists ai;t (") 2

�
�i;t

�
~yt�1; �0i;t; ��i;t

�
; �i;t

�
~yt�1; �"i;t; ��i;t

��
such

that vi
�
�"; ai;t (") ; fâi;�g� 6=t

�
= vi

�
�0; ai;t (") ; fâi;�g� 6=t

�
. From SCC-1,

vi

�
�"; a�; fâi;�g� 6=t

�
> vi

�
�0; a�; fâi;�g� 6=t

�
whenever a� > ai;t (") :

Thus, since the continuations in periods � > t are the same under both �0i;t and �
"
i;t, to reach

the desired contradiction it su¢ ces to show that for any yt�i 2 Y t�i, �i;t
�
yti ; y

t
�i
�
> at ("). (This,

for any realization of ~��i).

As in the initial step, de�ne:

� := min
(yt�i:�0�i;t)2Y t�i�B�i(ht�1;yt�i)

�
�i;t

�
yti ; y

t
�i
�
� �i;t

�
~yt�1; �0i;t; �

0
�i;t
��

(23)

For any " > 0, let

 (") = max
��i;t2��i;t

�
�i;t

�
~yt�1; �"i;t; ��i;t

�
� �i;t

�
~yt�1; �0i;t; ��i;t

�	
(24)

Since �i;t is strictly increasing in �i;t,  (") is increasing in " and  (") ! 0 as " ! 0. To

obtain the desired contradiction, it su¢ ces to choose " su¢ ciently small that  (") < �, and
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operate the substitutions as follows:

�i;t
�
yti ; y

t
�i
�
� �i;t

�
~yt�1; �0i;t; �

0
�i;t
�
+ �

� �i;t
�
~yt�1; �"i;t; �

0
�i;t
�
+ � �  (")

> �i;t
�
~yt�1; �"i;t; �

0
�i;t
�

> ai;t (") :

D.3 Proof of Proposition 4.

The proof is very similar to that of Proposition 3.

Initial Step: [s
�
D
�
hT�1

��
= sc

�
hT�1

�
for each hT�1]. The initial step is the same, to

conclude (in analogy with equation 21), that there exists aT (") such that

�i;T
�
~yT�1; �0i;T ; ��i;T

�
< ai;T (") < �i;T

�
~yT�1; �0i;T + "; ��i;T

�
(25)

such that

vi
�
xT�1; fT

�
~yT�1; �0i;T + "; ��i;T

�
; ai;T (") ; �i;�T

�
~yT�1

��
= vi

�
xT�1; fT

�
~yT�1; �0i;T ; ��i;T

�
; ai;T (") ; �i;�T

�
~yT�1

��
(26)

Then, SCC-2 (Def. 11) implies that

vi
�
xT�1; fT

�
~yT�1; �0i;T + "; ��i;T

�
; a�; �i;�T

�
~yT�1

��
> vi

�
xT�1; fT

�
~yT�1; �0i;T ; ��i;T

�
; a�; �i;�T

�
~yT�1

��
whenever a� > aT ("). From this point, the argument proceeds unchanged, concluding the

initial step.

Inductive Step: [for t = 1; :::; T � 1: if s [D (h� )] = sc [h� ] for all h� and all � > t then

s
�
D
�
ht
��
= sc

�
ht
�
for all ht]. The argument proceeds as in Proposition 3, to show that for

each � > t, and for each
�
~�; ~m�i

�
, if continuation strategies are self-correcting, there exists

�"
�
~�; ~m�i; �

�
> 0 such that:

for all " 2
�
0; �"
�
~�; ~m�i; �

��
;

��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�"i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
for all y��i:

Consider types of player i, �0i,�
"
i 2 �i such that for each � < t, �0i;� = �"i;� = �̂i;� (the one

actually reported on the path), and for all � > t, �i;� = sci;� as above, while at t respectively

equal to �"i;t and �
0
i;t. By construction, such types are such that for any � 6= t, ��i (�

") = ��i (�
0).
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From strict EPIC, we have that for any ��i

vi

�
�"; �i;t (�

"
i ; ��i) ; fâi;�g� 6=t

�
> vi

�
�0; �i;t (�

"
i ; ��i) ; fâi;�g� 6=t

�
and

vi

�
�"; �i;t

�
�0i; ��i

�
; fâi;�g� 6=t

�
< vi

�
�0; �i;t

�
�0i; ��i

�
; fâi;�g� 6=t

�
Thus, by continuity, there exists ai;t (")

�i;t
�
~yt�1; �0i;t; ��i;t

�
< ai;t (") < �i;t

�
~yt�1; �"i;t; ��i;t

�
(27)

such that

vi

�
�"; ai;t (") ; fâi;�g� 6=t

�
= vi

�
�0; ai;t (") ; fâi;�g� 6=t

�
From SCC-2 (Def. 11),

vi

�
f (�") ; a�; fâi;�g� 6=t

�
> vi

�
f
�
�0
�
; a�; fâi;�g� 6=t

�
whenever a� > ai;t (")

To reach the desired contradiction it su¢ ces to show that for any yt�i 2 Y t�i, �i;t
�
yti ; y

t
�i
�
>

ai;t ("). The remaining part of the proof is identical to Proposition 3.�

D.4 �Quasi-direct�Mechanisms.

This section shows how simple enlarged mechanisms may avoid incurring into the problem of

corner solutions, which allows us to modify the contraction property (De�nition 8) by guar-

anteeing that the sign condition holds with �i
�
ht�1; yt

�
= 0 at every history (equation 14).

This way, the dynamic contraction property is more directly comparable with Bergemann and

Morris�(2009a) static counterpart .

Let �̂i;t : Rnt ! R be a continuous extension of �i;t : Y t ! R from Y t to Rnt, strictly
increasing in the component that extends �i;t and constant in all the others on RntnY t. Set
m�
i;1 = �li;1 and m

+
i;1 = �hi;1, and for each t = 1; :::; T , let �̂i;t =

h
m�
i;t;m

+
i;t

i
, and Ŷ ti = �t�=1�̂i;�

where for all t = 2; :::; T , m�
i;t and m

+
i;t are recursively de�ned so as to satisfy:

m+
i;t = max

(
mi 2 R : max

(yti ;yt�i)2Y t

������̂i;t �yti ; yt�i�� min
ŷt�1i 2Ŷ t�1i

�̂i;t
�
ŷt�1i ;mi; y

t
�i
������ = 0

)
;

m�
i;t = min

(
mi 2 R : max

(yti ;yt�i)2Y t

������̂i;t �yti ; yt�i�� max
ŷt�1i 2Ŷ t�1i

�̂i;t
�
ŷt�1i ;mi; y

t
�i
������ = 0

)
:

Set the message spaces in the mechanism such that Mi;t = �̂i;t for each i and t. By

construction, for any private history hti =
�
ht�1; yti

�
, the self-correcting report sci

�
hti
�
satis�es

equation (9), that is sc is capable of fully o¤setting previous misreports: messages in �̂i;tn�i;t
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are used whenever equations (10) or (11) would be the case in the direct mechanism. (Clearly,

such messages never arise if sc is played.) To complete the mechanism, we need to extend the

domain of the outcome function to account for these extra messages. Such extension consists

of treating these reports in terms of the implied value of the aggregator: For given sequence of

reports ŷt 2 Ŷ t such that some message in �̂i;tn�i;t has been reported at some period � � t,

let gt
�
ŷt
�
= ft (�) for some � such that �i;� (�) = �i;� (ŷ

� ) for all i and � � t, ft (�) = ft (�
0).
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