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Abstract

Multiplicity of equilibria and the dependence on strong common knowledge assumptions

are well-known problems in mechanism design. We address them by studying full implementa-

tion via transfer schemes, under general restrictions on agents�beliefs. We show that incentive

compatible transfers ensure uniqueness �and hence full implementation �if they induce su¢ -

ciently weak strategic externalities. We then design transfers for full implementation by using

information on beliefs in order to weaken the strategic externalities of the baseline �canonical�

transfers. Our results rely on minimal restrictions on agents�beliefs, speci�cally on moments

of the distribution of types, that arise naturally in applications.
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1 Introduction

The problem of multiplicity is a key concern for the design of real-world mechanisms and insti-

tutions. Unless all the solutions of a mechanism are consistent with the outcome the designer

wishes to implement, the designer may not con�dently assume that the proposed mechanism will

perform well. This is a well known criticism of the widespread partial implementation approach to

mechanism design, which requires only that there exists one strategy pro�le consistent with the

chosen solution concept that guarantees desirable outcomes. The full implementation approach

(Maskin, 1999) overcomes the problem of multiplicity, but in pursuit of greater generality, the ex-

isting literature has typically adopted rather complicated mechanisms.1 Thus, while it addresses

an important practical concern, the full implementation literature overall has provided limited

insight into how real-world institutions could be designed to avoid the problem of multiplicity.

Another well-known limitation of the classical approach is its excessive reliance on common

knowledge assumptions. This criticism, often referred to as the �Wilson doctrine�, has recently

�We are particularly grateful to the Editor, and the anonymous referees, whose comments greatly improved the
paper. Special thanks also go to Larbi Alaoui, Ken Hendricks, Philippe Jehiel, George Mailath, Laurent Mathevet,
Meg Meyer, Stephen Morris, Andy Postlewaite, Rakesh Vohra and Bill Sandholm. We also thank seminar audiences
at Stanford, NYU, UPenn, Oxford, Cambridge, Minnesota, UW-Madison, UPF, Ohio State, Georgetown, Bocconi,
UCL, Queen Mary, Groningen and at several conferences. Mariann Ollar is grateful for the �nancial support of the
Warren Center for Network and Data Sciences at the University of Pennsylvania.

1See Jackson (1992) for an in�uential criticism of the tail-chasing mechanisms typically used in this literature.
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received considerable attention in the literature on robust implementation. It is fair to say, however,

that the aims of the Wilson doctrine, �[...] to conduct useful analyses of practical problems [...]�

(Wilson, 1987), are still far from being ful�lled. In our view, this is due to two main reasons.

First, most of this literature has focused on environments in which the designer has no information

about the agents� beliefs.2 This extreme assumption represents a useful benchmark to address

foundational questions, but signi�cantly limits the possible applications of the theory to practical

problems of mechanism design. Second, as far as full implementation is concerned, the literature has

focused on characterization results which o¤er little insights on the properties that more realistic

mechanisms should satisfy, in order to ensure full implementation. In this paper we address these

points pursuing a more pragmatic approach to full implementation, based on transfer schemes

that only elicit agents�payo¤-relevant information, and relying on more realistic assumptions of

common knowledge, intermediate between the classical and the �belief-free�approaches.

For the sake of illustration, consider the problem of e¢ cient implementation. In environments

with single-crossing preferences, the generalized VCG transfers of Cremer and McLean (1985)

guarantee partial implementation of the e¢ cient allocation in an ex-post equilibrium, with essen-

tially no restrictions on the strength of the preference interdependence. Hence, independent of the

agents�beliefs, truthful revelation (hence e¢ ciency) is always achievable as part of a Bayes-Nash

equilibrium (Bergemann and Morris, 2005). The problem with this mechanism is that it typically

admits also ine¢ cient equilibria, which can be ruled out if and only if the interdependence in

agents� valuations is not too strong (Bergemann and Morris, 2009a). But since in many cases

preference interdependence is strong, this characterization is often regarded as a negative result.

In this paper we shift the focus of the analysis from preference interdependence to the strategic

externalities in the mechanism, which - unlike preferences - can be a¤ected by the designer. The

problem with the VCG transfers, for instance, is that when agents�preferences exhibit strong inter-

dependence, the strategic externalities in the mechanism are strong, in that agents�best responses

are strongly a¤ected by others�strategies. This in turn generates multiplicity of equilibria, and

hence failure of full implementation. But if the designer has some information about the agents�

beliefs, then preferences and strategic externalities need not be aligned: the strategic externalities

can be weakened, so as to ensure uniqueness, even if preference interdependence is strong. Clearly,

to ensure that the unique solution implements the designer�s objective, the strategic externalities

should be weakened in a way that preserves incentive compatibility �if not in the ex-post sense,

then at least for the beliefs consistent with the designer�s information. Note that this argument also

suggests a tension between the robustness of the partial implementation result (achieved by the

VCG mechanism in an ex-post equilibrium), and the possibility of achieving full implementation

(which, if preference interdependence is strong, necessarily requires information about beliefs).

Our model covers implementation problems with one-dimensional types, smooth allocation

rules and smooth valuation functions, under varying assumptions on agents�beliefs. For this rea-

son, we adopt a solution concept which extends rationalizability to environments with incomplete

information and general assumptions on agents�beliefs.3 The resulting notion of implementation

provides a uni�ed framework to study full implementation under a broad class of belief restrictions,

2On the �belief free�approach, see Bergemann and Morris (2005, 2009a, 2009b, 2011) for static mechanisms and
Mueller (2015) and Penta (2015) for dynamic ones. We discuss the related literature in Section 6.

3Formally, our solution concept is a special case of Battigalli and Siniscalchi�s (2003) �-Rationalizability, and en-
compasses several notions such as belief-free (Bergemann and Morris, 2009a) and interim correlated rationalizability
(Dekel, Fudenberg and Morris, 2007). Further connections are discussed in Sections 3 and 6.
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thereby allowing for varying degrees of robustness. It also formalizes the idea that the robustness

of a mechanism is determined contextually with its design, and as such it can be chosen by the

designer the same way that transfers are. This change in perspective allows us to move beyond the

existing characterization results, to gain insights on what can still be achieved when the conditions

for belief-free implementation are not met.

The general analysis parallels the example above. First we derive the �canonical transfers�,

a generalization of well-known necessary conditions for ex-post incentive compatible payment

schemes. Depending on the environment, and particularly on the strength of the preference in-

terdependence, the canonical transfers may induce overly strong strategic externalities, which are

problematic for full implementation. The second part of our design then exploits the belief re-

strictions to reduce the strategic externalities, so as to induce uniqueness. The conditions that

guarantee full implementation relate the strength of the preference interdependence to the de-

signer�s information on agents� beliefs. This information takes the form of moment conditions,

which represent weak restrictions on agents�beliefs and which arise naturally in applications.

Our results suggest a simple design strategy: start with the canonical transfers, and then

compensate each agent for the strategic externality he faces, given everybody�s reports. To deter

agents from misreporting their types in order to in�ate their compensation, each agent i is also

asked to pay a fee equal to the expected cumulative marginal compensation, given his report:

ti (m) = t�i (m)| {z }
canonical transfers

(e.g., VCG)

+ CSEi (mi;m�i)| {z }
compensation for
strategic externality

(depends on everybody�s report)

�
Z mi

E
�
@CSEi
@mi

jsi
�
dsi| {z }

belief-based adjustment: cumulative
expected marginal compensation
(only depends on i�s report)

:

The �rst term we add to the canonical transfers reduces the strategic externalities and ensures

uniqueness; the last term, derived from the designer�s information about agents�beliefs, restores

incentive compatibility. Full implementation follows.

As applications of our main results, we study smooth environments that satisfy standard

single-crossing properties and a �public concavity�condition, which generalizes important classes of

models in the literature. Under these restrictions on preferences, we show that: (i) in the Bayesian

environments that are common in the classical and applied literature, full implementation via

transfers is always possible if types are independent, or if they are a¢ liated and valuations are

supermodular, regardless of preference interdependence; (ii) within these settings, ex-post incentive

compatibility is possible if and only if (interim) dominant-strategy implementation is; (iii) in non-

Bayesian environments, in which only the conditional averages of types are common knowledge,

implementation can always be achieved, provided that the conditional averages of the opponents�

types are constant or increasing in an agent�s own type.

Finally, we show that mechanisms with weak strategic externalities have further desirable

properties, such as low sensitivity to misspeci�cations of agents� beliefs. This result suggests

further notions of robustness as well as a novel concept of approximate implementation.

The rest of the paper is organized as follows. Section 2 introduces the model and the leading

examples. Section 3 presents the notion of implementation. Section 4 provides the main results on

full implementation via transfers. Section 5 contains the applications and the sensitivity analysis.

The related literature is discussed in Section 6. Section 7 concludes.
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2 Model

Environments and Mechanisms. We consider environments with transferable utility with a

�nite set of agents I = f1; :::; ng, in which the space of allocations X is a compact and convex

subset of a Euclidean space. Agents privately observe their payo¤ types �i 2 �i := [�i; �i] � R,
and we adopt the standard notation ��i 2 ��i = �j 6=i�j and � 2 � = �i2I�i for pro�les. Agent
i�s valuation function is vi : X ��! R, assumed three times continuously di¤erentiable, and we
let ti 2 R denote the private transfer to agent i: for each outcome (x; �; (ti)i2I), i�s utility is equal
to vi (x; �)+ ti. The tuple



I; (�i; vi)i2I

�
is common knowledge among the agents. If vi is constant

in ��i for every i, then the environment has private values. If not, it has interdependent values.

An allocation rule is a mapping d : � ! X which assigns to each payo¤ state the allocation

that the designer wishes to implement. We focus on allocation rules that are twice continuously

di¤erentiable and responsive, in the sense that for all i and �i 6= �0i, there exists ��i 2 ��i such
that d (�i; ��i) 6= d (�0i; ��i) (e.g., Bergemann and Morris (2009a)).

The model accommodates general externalities in consumption, including both pure cases of

private and public divisible goods. The main substantive restrictions are the one-dimensionality

of types, and the smoothness of the allocation function, which for instance rules out standard

auction applications. We will use the notation @f=@x for all derivatives, with the understanding

that when X is multidimensional, @vi@x (x; �) and
@d
@�i
(�) denote the vectors of partial derivatives

and @vi
@x (x; �) �

@d
@�i
(�) denotes their inner product.

We consider direct mechanisms, in which agents report their type and the allocation is chosen

according to d. A direct mechanism is thus uniquely determined by a transfer scheme t = (ti)i2I ,

ti : � ! R, which speci�es the transfer to each agent i, for all pro�les of reports m 2 �.4

(To distinguish the report from the state, we maintain the notation mi even though the mes-

sage spaces are Mi = �i.) We focus on transfer schemes that are twice continuously di¤er-

entiable and bounded. Thus, under the maintained assumptions, a transfer scheme induces a

game with ex-post payo¤ functions Ui(m; �) = vi(d(m); �) + ti(m) that are twice continuously

di¤erentiable and bounded.5 For every �i 2 �i, � 2 �(M�i ���i) and mi 2 Mi, we let

EU��i (mi) =
R
M�i���i

Ui (mi;m�i; �i; ��i) d� denote agent i�s expected payo¤ from message mi,

if i�s type is �i and his conjectures are �, and de�ne BR�i (�) := argmaxmi2Mi EU
�
�i
(mi).

Belief Restrictions. We model belief restrictions as sets of possible beliefs for each type of every

agent. Formally, the belief restrictions are a commonly known collection B = ((B�i)�i2�i
)i2I such

that B�i � �(��i) is non-empty and convex for all i and �i, and Bi : �i 7! B�i � �(��i) is

continuous for every i. If B and B0 are such that B�i � B0�i for all �i and i, we write B � B
0.

This formulation is fairly general. For instance, if B�i is a singleton for every �i and i, then

4The full implementation literature typically focuses on characterizations of the implementable f : �! Y , where
Y denotes the space of outcomes (see, e.g., Bergemann and Morris (2009a)). For Y = X�Rn, such characterization
results can be used to check whether a given f (�) = (d (�) ; t (�)) is implementable by a direct mechanism (and hence
whether a given transfer scheme implements d), but do not provide insights on how to design transfers for full
implementation. Since we are interested in this kind of constructive insights, we maintain here the standard setup
of the partial implementation literature: that is, we only take d : � ! X as given, and let the designer choose
t : �! Rn. The restriction to direct mechanisms also entails some loss of generality for full implementation, but in
these environments it allows an easier comparison with the partial implementation literature, by making transparent
what features of an incentive compatible transfer scheme may or may not be problematic for full implementation.

5Since (d; t) will be clear from the context, we don�t emphasize the dependence of the payo¤ functions on (d; t).
Also, for any measurable set E, we let �(E) denote the set of probability measures on its Borel sigma-algebra.
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we obtain a standard Bayesian environment, in which agents�hierarchies of beliefs are uniquely

pinned down by their payo¤ types. The further special case of a common prior model requires

that B�i = fb�ig are such that there exists p 2 �(�) s.t. b�i = p (�j�i) 2 �(��i) for each i and
�i. If, furthermore, B�i = B�0i for all i and all �i; �

0
i 2 �i, then we obtain the case of independent

types (cf. Example 1). At the opposite extreme, if B�i = �(��i) for all �i and i, then there are

essentially no restrictions on beliefs (beyond their support, that is), and the model coincides with

the belief-free environments that are common in the literature on robust mechanism design (see

footnote 2). Such vacuous restrictions are thus denoted by BBF . Our model also accommodates
settings, intermediate between the Bayesian and belief-free cases, in which some restrictions on

beliefs are maintained but not to the point that belief hierarchies are uniquely determined by the

payo¤ types. In those cases, B represents the designer�s partial information about agents�beliefs.
Clearly, if B � B0, then B0 entails weaker restrictions than B.

2.1 Leading Examples

Example 1 (Full Implementation in a Common Prior Model) Consider an environment
with two agents, i 2 f1; 2g. The social planner chooses a quantity x 2 X � R+ of a public good,
with cost of production c (x) = 1

2x
2. Agents�valuation functions are vi (x; �) = (�i + 
�j)x, where


 � 0 is a parameter of preference interdependence: if 
 = 0, this is a private-value setting; if


 > 0, values are interdependent. The planner knows that types are i.i.d. draws from a uniform

distribution over �i � [0; 1], denoted by ���i , and that this is common knowledge among the

agents. This is a standard common prior environment, with independently distributed types and

interdependent values. The planner�s information about agents� beliefs is represented by belief

restrictions B = ((B�i)�i2�i
)i2I such that B�i =

�
���j

	
for every i, j 6= i and �i 2 �i.

The social planner wishes to implement the e¢ cient level of public good, d (�) = (1 + 
) (�1 + �2).

This allocation rule can be partially implemented by the generalized VCG transfers

tV CGi (m) = � (1 + 
)
�
1

2
m2
i + 
mimj

�
: (1)

Given this, for any pair (mj ; �j) of j�s report and type, the ex-post best-reply for type �i is

BRV CG�i (mj ; �j) = proj[0;1] (�i + 
 (�j �mj)) .6 (2)

Observe that, for any 
 � 0, truthful revelation (mi (�i) = �i) is a best response to the opponent�s

truthful strategy (mj (�j) = �j), and hence the e¢ cient allocation rule is partially implemented

independent of agents� beliefs. Furthermore, if 
 < 1, equation (2) is a contraction, and its

iteration delivers truthful revelation as the only rationalizable strategy. In this case, the VCG

mechanism also guarantees belief-free full implementation (Bergemann and Morris (2009a)). But

full implementation fails if 
 � 1. (In the symmetric case with n agents, it can be shown that no
mechanism achieves belief-free full implementation if 
 � 1= (n� 1).)

Hence, with weak interdependence in valuations, the designer need not rely on the common

prior: the VCG mechanism ensures full implementation in the belief-free model BBF � B. If the
interdependence is strong, however, full implementation fails, even under the B-restrictions. For

6For any y 2 R, proj[0;1] (y) := argminmi2[0;1] jmi � yj denotes the projection of y on the interval [0; 1].
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instance, if 
 = 2 and types are independently and uniformly distributed, the strategy pro�le

(m̂1 (�1) = 1; m̂2 (�2) = 0) is also a Bayes Nash equilibrium of this mechanism, and it is ine¢ cient.

Being designed to achieve ex-post incentive compatibility, the VCG mechanism ignores any

information about agents�beliefs. We propose next a di¤erent set of transfers, which do exploit

some information contained in the common prior (namely, that E (�j j�i) = 0:5 for all �i and i):

t�i (m) := � (1 + 
)
�
1

2
m2
i + 
miE (�j j�i)

�
= � (1 + 
)

�
1

2
m2
i + 
mi � 0:5

�
: (3)

These transfers induce the following best response function:

BR��i (m̂j (�)) = proj[0;1] (�i + 
 [E (�j j�i)� 0:5]) : (4)

Since, under the common prior, E (�j j�i) = 0:5 for all �i, the term in square brackets cancels

out for all types. Truthful revelation therefore is strictly dominant, regardless of the strength

of preference interdependence, 
. Note that this holds for all beliefs that satisfy the moment

condition �E (�j j�i) = 0:5 for all �i.�Hence, full implementation is guaranteed not just for the

common prior model, B, but also for the weaker restrictions B̂ = ((B̂�i)�i2�i)i2I de�ned as B̂�i :=�
bi 2 �(�j) :

R
�j � dbi = 0:5

	
. Moreover, since truthful revelation is dominant in this mechanism,

given B̂, such restrictions need not be common knowledge among the agents: as long as E (�j j�i) =
0:5 for all �i, full implementation obtains independent of higher order beliefs. �

The previous example poses a standard Bayesian implementation problem, in which the plan-

ner�s information is represented by a common prior model, B. Full implementation, however, need
not rely on the full strength of these assumptions. If 0 � 
 < 1, the VCG mechanism ensures

belief-free implementation, that is for all beliefs consistent with BBF� B. If 
 � 1, the transfers in
(3) achieve full implementation for all beliefs consistent with B̂ � B. Clearly, the precise de�nition
of B̂ depends on the particular moment condition we used to design the transfers. Had we used a
di¤erent condition, full implementation might have obtained for di¤erent belief restrictions B0� B.
Thus, it is not only true that B, which represents the designer�s information, need not coincide
with the set of beliefs for which implementation is ensured (such as BBF or B̂ in the example), but
the latter set is itself determined by the planner�s choice of the mechanism.

In Section 3 we introduce the notion of implementation, and formalize the sense in which

the strength of the strategic externalities, not of the preference interdependence, is key for full

implementation. The two go hand in hand in belief-free environments, but need not coincide if the

designer has some information about agents�beliefs. In Section 4 we develop a design principle

which consists of using properly chosen belief restrictions to weaken the strategic externalities of a

baseline �canonical�mechanism. We show that moment conditions, formally introduced in Section

2.2, are particularly suited to this task.

In the example above, a moment condition enabled us to completely o¤set the strategic exter-

nalities of the VCG mechanism, thereby ensuring full implementation in dominant strategies. In

the general case in which strategic externalities cannot be completely eliminated, our design strat-

egy pursues contractive best replies, to ensure that truthful revelation is the unique rationalizable

outcome. The next example illustrates this point in a non-Bayesian model.
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Example 2 (Full Implementation without a Common Prior) Consider an environment
with three agents, i 2 f1; 2; 3g, who commonly believe that types �i 2 [0; 1] are i.i.d. draws from
some distribution �. The distribution itself, however, is not necessarily known by the agents, and

most importantly it is unknown to the designer. This environment therefore provides an example

both of non-Bayesian belief restrictions and of a situation in which the designer may know less

than what is commonly known by the agents.

Preferences are such that vi (x; �) = (�i + 
�j + ��k)x for each i, where x 2 R+ denotes the
quantity of public good, 
; � 2 R, and where we let j := i + 1 (mod 3) and k := i + 2 (mod 3).

If the cost of production is the same as in the previous example, the e¢ cient allocation rule is

d (�) = � (�1 + �2 + �3) where � � (1 + 
 + �). The VCG transfers are tV CGi (m) = ��(0:5m2
i +

mi (
mj + �mk)), which induce the following interim best reply:

BRV CG�i = proj[0;1] (�i + E (
 (�j �mj) + � (�k �mk) j�i)) :

Now, suppose that 
 = 4=3 and � = �2=3. With these parameter values, any report pro�le is
rationalizable, and belief-free implementation fails. The following transfers instead achieve full

implementation: t�i (m) = t
V CG
i (m) +mi�
 (mj �mk). With these transfers, the best reply is:

BR��i = proj[0;1] (�i + 
E (�j � �kj�i) + (
 + �)E (�k �mkj�i)) (5)

= proj[0;1] (�i + (
 + �)E (�k �mkj�i)) :

The simpli�cation in the second line occurs because, regardless of the distribution �, we have

that E (�j � �kj�i) = 0 in this model. Unlike the previous example, strategic externalities are

not eliminated in this case. However, for the values of parameters speci�ed above, the term

(
 + �) = 2=3 < 1. Hence, the best-replies induce a contraction, which delivers truthful revelation

as the only rationalizable pro�le. Similar to the previous example, full implementation only relies

on common knowledge of the moment condition �E (�j � �kj�i) = 0 for all �i�. Formally, the belief
restrictions B in this model are such that B�i = fbi 2 �(��i) : 9� 2 �([0; 1]) s.t. bi = 
j 6=i�g,
whereas transfers t� achieve full implementation for the weaker restrictions B0 � B, such that
B0�i = fbi 2 �(��i) :

R
(�k � �j) dbi = 0g, whenever j
 + �j < 1: �

2.2 Moment Conditions

As shown above, our design strategy exploits a special class of belief restrictions: moment condi-

tions. In this section we introduce the concept formally.

De�nition 1 A B-consistent moment condition is a collection � = (Li; fi)i2I of twice con-

tinuously di¤erentiable functions, Li : ��i ! R and fi : �i ! R, such that given B it is common
knowledge that i�s expectation of Li (��i) varies with �i according to fi. We let % (B) denote the
set of moment conditions that are consistent with B. Formally, (Li; fi)i2I 2 % (B) if and only ifZ

��i

Li (��i) dbi = fi (�i) for all i, �i and bi 2 B�i . (6)

7



For each B-consistent moment condition, � = (Li; fi)i2I 2 % (B), we de�ne the belief restric-
tions in which only common knowledge of � is maintained, as B� = ((B��i)�i2�i)i2I such that:

B��i :=

(
bi 2 �(��i) :

Z
��i

Li (��i) dbi = fi (�i)

)
for all i and �i:

It is easy to see that, for any B and � 2 % (B), B� entails weaker restrictions than B (that is,
B� � B). The next two examples show how moment conditions are implicit in standard models.

Example 3 (Unobserved Heterogeneity and Fundamental Value Models) Suppose that
types �i are i.i.d. draws from a distribution F�, where � is drawn from another distribution H and

is unobserved by the designer. This model entails many moment conditions. For instance, it is

common knowledge in this model that E (�l � �kj�i) = 0 for all �i and i 6= l; k. This is represented
by setting Li (��i) = �l��k for some l; k 6= i and fi (�i) = 0 for all �i. (This moment condition was
used in Example 2.) Notice that this is the case regardless of the details of the distributions H and

F�, and on whether � is observed or not by the agents. Examples of the �rst case include models

of unobserved heterogeneity (e.g., Aradillas-Lopez et al., 2013). Examples of the second case are

provided by fundamental value models, in which �i = �0 + "i, where "i�s are i.i.d. across agents

and independent of �0, which in turn is drawn from a normal distribution but remains unobserved

(e.g., Grossman and Stiglitz (1980) and Hellwig (1980)). �

Example 4 (Spatial Values) Consider an environment with two groups of agents (e.g., distinct
by geographic location, technology, etc.). Agents are assigned to group 1 independently with

probability p, and they inherit the type of their group, drawn independently from a distribution

with mean E (�). An agent�s type is his private information, his group is known to the designer but
not to the other agents (e.g., Ausubel and Baranov (2013)). In this model it is common knowledge

that E (�j j�i) = p (i) �i + (1� p (i))E (�), where p (i) = p if i belongs to group 1, and (1� p)
otherwise. The corresponding moment condition obtains setting Li (��i) = �j for some j 6= i and
fi (�i) = p (i) �i + (1� p (i))E (�). �

Moment conditions arise naturally in many settings, in which knowledge of some moments of

the distribution is a more basic and realistic kind of information than the one implicit in standard

common prior models. Consider the following examples:

Example 5 (Uncorrelated Types without a Prior) Suppose that the designer has data show-
ing no signi�cant correlations across agents. His information, however, does not include the entire

distribution of agents� types, but only some moments � of that distribution. In this case, the

designer�s information itself consists of moment conditions (that is, B = B�). For example, if types
are uncorrelated, for each i, j and �i, we have E (�j j�i) = yj for some yj 2 R. In this case, a
moment condition obtains by letting Li (��i) = �j and fi (�i) = yj . �

Example 6 (Estimation-based Conditions) Consider a situation in which past data facilitate
conditional predictions of agents� types in the form of linear regressions. Linear regressions are

moment conditions, with Li (��i) = �j for j 6= i and fi (�i) = ĉi + âi�i (where âi and ĉi are

the estimated coe¢ cients). Alternatively, past data may only report aggregate statistics of the

distributions, so that only conditional expectations of the average of types may be available. In

this case, a moment condition is obtained by letting Li (��i) = 1
n�1

P
j 6=i �j , and so on. �
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Econometric methods often provide a description of the environment in terms of conditional

moments of the distributions, rather than a single �common prior�. In these cases, the very belief-

restrictions B can be speci�ed as the set of all beliefs consistent with such moment conditions,
taken as a primitive. Examples 5 and 6 are instances of such situations.

Observe that, in general, any belief restriction entails common knowledge of some moment

conditions (that is, % (B) 6= ; for any B). At a minimum, condition (6) is satis�ed for any constant
functions �Li (�) = �fi (�) = �y. In a belief-free environment, only such trivial moment conditions

are commonly known. (Conversely, B� � BBF whenever � =
�
�Li; �fi

�
i2I consists of such trivial

moment conditions). In general, the stronger the belief-restrictions (i.e., the smaller the sets B),
the richer the set of moment conditions: % (B0) � % (B) if B � B0. Hence, common prior models are
maximal in the set of moment conditions they satisfy: if B is a common prior model, any collection
of functions Li : ��i ! R satis�es

�
Li; f

L
i

�
i2I 2 % (B) for f

L
i (�i) :=

R
��i

Li (��i) dp (�j�i), and
hence the designer has maximum freedom to choose a suitable moment condition (cf. Section 5).

3 Implementation

Our solution concept, B-rationalizability, is de�ned by an iterated deletion procedure in which,
for each type �i, a report survives the k-th round of deletion if and only if it can be justi�ed by

conjectures (i.e., joint beliefs over the opponents�types and their behavior in the mechanism) that

are consistent with the belief restrictions for that type, and with the previous rounds of deletion.

For every i and �i, the set of conjectures that are consistent with the belief restrictions for type �i
is de�ned as CB�i :=

�
�i 2 �(M�i ���i) : marg��i�i 2 B�i

	
:

De�nition 2 (B-Rationalizability) Fix a direct mechanism and belief restrictions B. For every
i 2 I, let RB;0i = �i �Mi and for each k = 1; 2; :::, let R

B;k�1
�i = �j 6=iRB;k�1j ,

RB;ki =
n
(�i;mi) : mi 2 BR�i (�i) for some �i 2 CB�i \�

�
RB;k�1�i

�o
, and RBi =

\
k�0

RB;ki :

The set of B-rationalizable messages for type �i is de�ned as RBi (�i) :=
�
mi : (�i;mi) 2 RBi

	
.7

De�nition 3 (Full Implementation) Allocation rule d is B-implemented by transfer scheme
t = (ti)i2I , if truthful revelation is the only B-rationalizable strategy pro�le in the direct mechanism
(d; t) (that is, if RBi (�i) = f�ig for all i and �i).8 If this occurs in only one round of deletion (i.e.,
if RB;1i (�i) = f�ig for all i and �i), then we say that t implements d in B-dominant strategies.

We say that d is B-implementable (respectively, B-DS implementable) if there exist transfers
that B-implement d (respectively, implement d in B-dominant strategies).

As the belief restrictions are varied, B-rationalizability coincides with various versions of ra-
tionalizability, some of which play an important role in the literature on robustness and imple-

mentation (see Section 6). Also note that B-rationalizability is a weak solution concept, and full
7B-rationalizability is a special case of Battigalli and Siniscalchi�s (2003) �-Rationalizability, obtained by setting

their �-restrictions such that ��i = C
B
�i
for all �i. Under the maintained assumptions of Section 2, the sets R

B;k�1
i

are measurable and well-de�ned for the mechanisms we consider, for every k.
8A weaker notion of implementation would allow non-truthful reports, provided that they all induce the same

allocation as the true type pro�le (i.e., RB (�) 6= ;, and d (m) = d (�) for all m 2 RB (�)). But it can be shown that
the two notions coincide for responsive allocation rules.
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implementation results are stronger if obtained with respect to a weaker solution concept. Hence,

su¢ cient conditions for full B-implementation guarantee full implementation with respect to any
(non-empty) re�nement of B-Rationalizability. Finally, it can be shown that B-rationalizability
characterizes the set of all Bayes-Nash equilibrium strategies, taking the union over all type spaces

that are consistent with B. Full B-implementation therefore can be seen as a shortcut to analyze
standard questions of Bayesian implementation for general belief restrictions.

B-DS implementation is more demanding and �more robust�than B-implementation. As shown
in Example 1, if truthful implementation is achieved in one round of B-rationalizability, then
truthful revelation is the only best response to all conjectures consistent with B. In this case, full
implementation obtains independent of higher order beliefs, so the belief restrictions need not be

common knowledge among the agents.

It is immediate from De�nition 3 that, in order to achieve B-implementation, the truthful
pro�le must be a mutual best response for every type and for all conjectures consistent with the

belief restrictions. This suggests the following notion of incentive compatibility.

De�nition 4 A direct mechanism is strictly B-incentive compatible (B-IC) if, for every agent
and every type, truthful revelation is a strict best response to all conjectures that are consistent with

the belief restrictions and concentrated on the opponents�truthful pro�le. Formally, if BR�i (�) =

f�ig for all i 2 I, �i 2 �i, and for all � 2 CB�i s.t. � (f(��i;m�i) : m�i = ��ig) = 1.

It is easy to verify that strict B-IC coincides with strict ex-post incentive compatibility (EPIC)
if B = BBF , and with strict interim (or Bayesian) incentive compatibility if B is a standard type
space. The following results are straightforward, from De�nitions 3 and 4:

Remark 1 (i) Strict B-IC is a necessary condition for B-implementation. (ii) If a direct mech-
anism is strictly B0-IC, then it is strictly B-IC for all stronger restrictions B � B0. (iii) If d is
B0-implementable, then it is B-implementable for all stronger restrictions B � B0.

The last point formalizes the idea, discussed in Section 2.1, that achieving implementation with

respect to B (the beliefs consistent with the designer�s information) is the minimum objective.

The notion of implementation, however, implicitly accounts for the possibility of achieving full

implementation for weaker belief restrictions B0 � B, which would ensure a more robust result. In
Example 1, for instance, depending on the parameter 
, full implementation could be obtained with

respect to BBF or B̂, both of which are weaker than the designer�s information in that example.
Hence, if d is B�-implementable for some � 2 % (B), B-implementation is achieved in a �more robust�
sense (that is, relying on weaker common knowledge assumptions, namely B� � B).

As usual, incentive compatibility does not su¢ ce for full implementation. We provide next

some su¢ cient conditions, which will inform the design of transfers in Section 4.9

Theorem 1 Let (d; t) be strictly B-incentive compatible, with twice continuously di¤erentiable
transfers ti : M ! R and such that, for every i 2 I, �i 2 �i and � 2 CB�i , EU

�
�i
: Mi ! R is

strictly concave. Then, (d; t) achieves full B-implementation if the following holds:
9 In Ollár and Penta (2016) we provide a full characterization of B-implementation. The characterization result,

however, is not particularly suited to providing insights on the design of transfers for full implementation. Thus,
rather than discussing the full characterization, we focus here on su¢ cient conditions which provide a clearer
economic intuition. None of the results in this paper rely on the characterization in Ollár and Penta (2016).
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(B-Limited Strategic Externalities (B-LSE)) for all i and �i, for all � 2 CB�i and mi;m
0
i 2Mi,�����

Z
M�i���i

@2Ui
@2mi

(m0
i;m�i; �i; ��i) d�

����� >
Z
M�i���i

X
j 6=i

���� @2Ui
@mi@mj

(mi;m�i; �i; ��i)

���� d�: (7)

To understand this result, consider the �rst-order condition of type �i�s optimization problem,

given conjectures � 2 CB�i :
R
M�i���i

@Ui
@mi

(mi;m�i; �i; ��i) d� = 0. Under the concavity assump-

tion in the theorem, this condition is both necessary and su¢ cient for an interior m�
i to be a best

response to � 2 CB�i . Then, the second derivative
@2Ui

@mi@mj
(mi;m�i; �i; ��i) measures the e¤ect of

j�s report on i�s best response, and hence j�s �strategic externality�on i. Condition (7) requires the

�own e¤ect�to be stronger than the opponents�e¤ects, considered jointly. This condition therefore

captures the idea that strategic externalities should not be too large.

Theorem 1 extends a result from Moulin (1984), which ensured uniqueness in �nice games�

with complete information. The proof of Theorem 1, however, requires a di¤erent argument. This

is partly due to the in�nite-dimensional strategy spaces, but also to the robustness requirement

implicit in the belief restrictions: unlike Moulin�s complete information case, the concavity and

LSE-conditions alone do not su¢ ce for the uniqueness result. A case in point is provided by Section

5.2, in which we show that mechanisms that satisfy both the concavity and LSE conditions, but

fail B-incentive compatibility, may have multiple B-rationalizable outcomes.

4 Designing Transfers for Full Implementation

Theorem 1 suggests that mechanisms with concave payo¤ functions and �small� strategic exter-

nalities may be useful to attain full implementation. In the following we exploit this insight to

explicitly design transfers for full implementation.

We begin by considering belief-free implementation, which ensures the maximum level of ro-

bustness. In Section 4.1 we introduce the canonical transfers, and show that they characterize

the mechanisms that achieve belief-free implementation. Hence, if the canonical transfers induce

overly strong strategic externalities, belief-free implementation is impossible. Full implementation

may still be possible if information about beliefs is used. In Section 4.2 we obtain transfers for full

implementation adding a belief-based term to the canonical transfers. The extra term is derived

from moment conditions chosen in order to ensure the concavity and the B-LSE conditions. Full
implementation then follows from Theorem 1.

4.1 Canonical Transfers and Belief-Free Implementation

Consider the following transfers: for each i 2 I and m 2 �, let

t�i (m) = �vi (d (m) ;m) +
Z mi

�i

@vi
@�i

(d (si;m�i) ; si;m�i) dsi: (8)

We will refer to t� = (t�i (�))i2I as the canonical transfers, and to the pair (d; t�) as the canonical
direct mechanism. In the canonical direct mechanism, agents pay their valuation as entailed by

the reports pro�le minus the �total own preference e¤ect�. This way, agents�payments coincide
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with the �total allocation e¤ect�of their report, given the opponents�messages.10

The canonical transfers generalize several known mechanisms, such as the VCG mechanism if

d is the e¢ cient allocation rule, Myerson (1981), La¤ont and Maskin (1980) and Mookherjee and

Reichelstein�s (1992) mechanisms in private value settings, and Li (2016) and Roughgarden and

Talgam-Cohen�s (2013) with interdependent values. Proposition 1 below shows that the canonical

transfers characterize the direct mechanisms that achieve belief-free full implementation. This

result follows immediately from the following lemma, which extends analogous results for partial

implementation in the above mentioned special cases:

Lemma 1 Suppose that (d; t) is ex-post incentive compatible and di¤erentiable. Then, for every i
and for every m, there exists a function �i : ��i ! R such that ti (m) = t�i (m) + �i (m�i).

Proposition 1 Allocation rule d is belief-free fully implementable by a di¤erentiable direct mech-
anism if and only if it is belief-free fully implemented by the canonical direct mechanism.

In many environments of economic interest the canonical direct mechanism is strictly concave

(see Section 5). Hence, if in such environments strict ex-post incentive compatibility is possible,

full implementation can only fail if the canonical direct mechanism induces overly strong strategic

externalities. We provide next a measure of such strategic externalities. For any i 2 I, let

Wi :M ��! R be such that

Wi (m; �) :=

�
@vi
@x

(d (m) ; �)� @vi
@x

(d (m) ;m)

�
@d

@�i
(m) .

For every i 2 I, de�ne the externality gap as:

EGi := max
�;m;m0

i

0@X
j 6=i

����@Wi

@mj
(m; �)

����� ����@Wi

@mi
(m0

i;m�i; �)

����
1A : (9)

Corollary 1 Suppose that the canonical direct mechanism is �strictly concave�in the sense above.

Then: If (d; t�) is strictly EPIC but not belief-free fully implementable, then EGi > 0 for some i.

To understand this result, note that Wi (m; �) is the derivative of the ex-post payo¤ function

of the canonical direct mechanism with respect to i�s type, evaluated at state �, when the reported

pro�le is m. The externality gap therefore measures the maximal di¤erence between the oppo-

nents�ability to jointly a¤ect this derivative and agent i�s own e¤ect, evaluated across all possible

combinations of states and reports. Hence, EGi < 0 means that i�s own e¤ect on the �rst-order

10Consider the �rst term of (8). Let $i (�) � vi (d (�) ; �) and consider its derivative with respect to �i at ~�,

@$i

@�i

�
~�
�
=
@vi

@x

�
d
�
~�
�
; ~�
�
� @d
@�i

�
~�
�
+
@vi

@�i

�
d
�
~�
�
; ~�
�
:

The �rst term represents the �allocation e¤ect�: the variation of i�s valuation at ~�, when the allocation changes due
to a change in the reported type. The second term is the �own preference e¤ect�: the variation of i�s valuation due

to �i, holding d
�
~�
�
constant. Integrating both terms with respect to �i, we obtain that $i can be decomposed as

$i

�
~�
�
=

Z ~�i

�i

@vi

@x

�
d
�
si; ~��i

�
; si; ~��i

�
� @d
@�i

�
si; ~��i

�
dsi +

Z ~�i

�i

@vi

@�i

�
d
�
si; ~��i

�
; si; ~��i

�
dsi;

where the �rst term is the �total allocation e¤ect�and the second is the �total preference e¤ect�. Thus, the canonical
transfer in (8) can be seen as the negative of the total allocation e¤ect of the reported type, given opponents�reports.
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condition of the canonical direct mechanism always dominates the combined strategic externalities

at all states and reports. The result then follows from Theorem 1.

4.2 Full Implementation via Moment Conditions

By the results in Section 4.1, if the canonical direct mechanism is strictly concave and strictly

ex-post incentive compatible, failure to achieve belief-free implementation is due to the existence

of positive externality gaps. In these cases, information about beliefs may be useful to weaken

the strategic externalities and achieve full implementation. In general, also incentive compatibility

may be problematic. In that case, belief restrictions can be used to ensure both properties.

The next theorem relates the possibility of achieving full implementation to the moment condi-

tions consistent with B. As discussed in Section 2, the choice of the moment condition a¤ects both
the design and the degree of robustness achieved by the mechanism. This result thus formalizes

the idea that robustness in our model is envisioned as a choice of the designer:

Theorem 2 Allocation rule d : � ! X is fully B-implementable if there exists a B-consistent
moment condition � = (Li; fi)i2I 2 % (B) such that, for all i, �i;mi;m

0
i and for all � 2 CB

�

�i
:

1.
R
M�i���i

@Wi

@mi
(mi;m�i; �i; ��i) d� < f

0
i (mi), and

2.
R
M�i���i

���@Wi

@mi
(m0

i;m�i; �i; ��i)� f 0i (m0
i)
��� d� > P

j 6=i

R
M�i���i

���@Wi

@mj
(mi;m�i; �i; ��i) +

@Li
@mj

(m�i)
��� d�.

Moreover, for � = (Li; fi)i2I 2 % (B) that satis�es the two conditions, the following transfers
guarantee full B�-implementation (hence full B-implementation):

t�i (m) = t�i (m)| {z }
canonical transfers

+Li (m�i)mi �
Z mi

�i

fi (si) dsi| {z }
moment condition-based term

: (10)

The following (stronger) version of these conditions is often easier to check in applications:

Remark 2 The conditions of Theorem 2 are satis�ed if for all i, for all � 2 �, for all m�i 2M�i

and for all mi;m
0
i 2Mi:

1. @Wi

@mi
(mi;m�i; �) < f

0
i (mi)

2.
���@Wi

@mi
(m0

i;m�i; �)� f 0i (m0
i)
��� > P

j 6=i

���@Wi

@mj
(mi;m�i; �) +

@Li
@mj

(m�i)
��� :

Theorem 2 states two properties of moment conditions that are useful to achieve full implemen-

tation, and may thus guide the designer�s choice of a suitable moment condition. To understand

what these are, let us consider the ex-post versions stated in Remark 2. First, note that if fi is

constant, then Condition 1 ensures that the canonical direct mechanism is strictly concave in own

action and strictly EPIC. Second, note that if the externality gap (9) is negative for all i, then

Condition 2 is satis�ed by any trivial moment condition, in which fi and Li are constant functions.

Since such trivial moment conditions are consistent with any belief restrictions, full implementation

is guaranteed by the canonical direct mechanism in the belief-free sense. Now, suppose that the

externality gap is positive for some agent. Condition 2 clari�es which properties of beliefs can be
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used to weaken the strategic externalities: a moment condition in which the derivative of fi has the

opposite sign of @Wi=@mi can be used to increase the �own e¤ect�, whereas the �external e¤ects�

can be weakened by moment functions Li with derivatives that contrast the strategic externality in

the canonical direct mechanism. Condition 1 instead requires that the �own e¤ect�in the canonical

direct mechanism is bounded above by the derivative of fi.

To gain further insights on how these conditions contribute to the full implementation result, it

is useful to consider the transfers that achieve full implementation (eq. 10). With these transfers,

the �rst-order derivative of �i�s expected payo¤, given � 2 �(M�i ���i), is:

@EU��i
@mi

(mi) =

Z
M�i���i

��
@vi
@x

(d (m) ; �)� @vi
@x

(d (m) ;m)

�
@d

@�i
(m) + Li (m�i)� fi (mi)

�
d�:

This shows that for any conjectures � 2 CB��i concentrated on the opponents�truthful pro�le, the

report mi = �i satis�es the �rst-order conditions. This does not necessarily result in strict B�-IC,
as that also depends on the second-order conditions. But Condition 1 guarantees that the ensuing

mechanism is concave, and hence the second-order conditions are met. This mechanism therefore

is strictly B�-IC and satis�es the concavity condition in Theorem 1. Full implementation follows

from the fact that Condition 2 in Theorem 2 also guarantees the B�-LSE condition of Theorem 1.

Example 7 (Example 1-Redux) Note that applying the formula of the canonical transfers (8)
to Example 1, and dropping all terms that are constant in i�s own report (and hence do not

a¤ect his best response), delivers the VCG transfers in (1). It is easy to verify that, in this

case, @Wi

@mi
(m; �) = � (1 + 
) and @Wi

@mj
(m; �) = � (1 + 
) 
. Letting Li (�j) = (1 + 
) 
�j , under

the independent uniform common prior we obtain fi (�i) := E (Li (�i) j�i) = 0:5 � (1 + 
) 
, and
hence @Li

@�j
(�j) = (1 + 
) 
 and f 0i (�i) = 0. Thus, both conditions of Theorem 2 are satis�ed for

� = (Li; fi)i2f1;2g, and in fact with the RHS of Condition 2 equal to zero. Clearly, these moment

conditions only rely on common knowledge that E (�j j�i) = 0:5, and applying the formula in (10)
to moment condition � = (Li; fi)i2f1;2g we obtain the adjusted transfers (3) in Example 1. �

5 Applications and Extensions

In this Section we illustrate how Theorem 2 can be applied to special cases of interest, under

di¤erent assumptions on agents�beliefs. We also show further robustness properties of the design

strategy put forward in Theorem 2.

5.1 SCC-Environments: A Robustness Trade-o¤

For simplicity, in this subsection we maintain that X � R. A common assumption in applications
is provided by the following single-crossing condition (SCC):

Assumption 1 (SCC) : For all i 2 I and (x; �), @2vi
@x@�i

(x; �) > 0.

The next lemma generalizes standard results on ex-post (partial) implementation:

Lemma 2 In environments that satisfy Assumption 1, the canonical direct mechanism (d; t�) is

strictly ex-post incentive compatible if and only if d is strictly increasing in each �i.
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Because of this result, in the following we refer to SCC-environments as those that (in addition

to the maintained assumptions) satisfy Assumption 1 and such that d is strictly increasing in each

�i. The next result, which follows immediately from Lemma 2 and Corollary 1, summarizes easy-

to-check conditions for belief-free full implementation in SCC-environments:11

Proposition 2 In SCC-environments, the allocation rule d is belief-free fully implementable if
@Wi

@mi
(m; �) < 0 and

���@Wi

@mi
(m; �)

��� > P
j 6=i

���@Wi

@mj
(m0

i;m�i; �)
��� for all i, �, m and m0

i:

Hence, in SCC-environments, belief-free full implementation may fail only if the canonical

direct mechanism is not globally concave or if there are positive externality gaps. Proposition

2 therefore highlights a trade-o¤ in SCC-environments, between the robustness of the partial

implementation result �obtained by the canonical direct mechanism in a belief-free sense �and

the possibility of achieving full implementation: the latter necessarily relies on belief restrictions

and therefore reduces the robustness of the partial implementation result.

To simplify the analysis, we �rst consider the following assumption:

Assumption 2 (SCC-PC) (i) For each i and j, @2vi=@2x and @2vi=@x@�j are constant in �; (ii)
the allocation rule is linear in � : @2d

@�i@�j
(�) = 0 for all i,j and �.

A special case of these conditions is provided by environments with quadratic valuations and

linear allocation functions.12 Assumption 2 also accommodates more general dependence on x,

as long as the concavity and the cross derivatives are public information. We thus refer to the

SCC-environments which also satisfy Assumption 2 as SCC-environments with �public concavity�

(SCC-PC). This assumption, however, is not essential to our analysis. In Section 5.1.3 we discuss

how the results are a¤ected when it is relaxed. Note that, in SCC-PC environments, @Wi

@mi
(m; �) < 0

for all (m; �). Hence, by Proposition 2, belief-free implementation fails only if there are positive

externality gaps; in this case if
��� @2vi@x@�i

(d (m) ;m)
��� �Pj 6=i

��� @2vi@x@�j
(d (m) ;m)

��� for some m and i.

5.1.1 Common Prior Models

As explained in Section 2, in common prior environments the belief restrictions B are such that
for every i and �i, B�i = fb�ig, where b�i = p (�j�i) 2 �(��i) for some p 2 �(�). Then,

B-IC coincides with interim-IC, and one could similarly refer to B-DS implementation as interim
dominant strategy implementation. (If B is a standard common prior model, B-DS implementation
11This result is related to Bergemann and Morris (2009a, BM), who characterize belief-free implementation via

direct mechanisms in environments with monotone aggregators (i.e., such that 8i, vi (x; �) = wi (x; hi (�)) for some
wi : X � R!R and hi : � ! R strictly increasing in �i). BM�s characterization is in terms of strict EPIC and
the following �contraction property�(Def.5, p.1183, BM): 8� : �! 2� s.t. � 2 � (�) for all �, but � (�0) 6= f�0g for
some �0, there exists i, �i and �00i 2 �i (�i) with �00i 6= �i such that, for all ��i and �0�i 2 ��i (��i), sign(�i � �00i ) =
sign(hi(�i; ��i)� hi(�00i ; �0�i)). In SCC-environments that satisfy both BM�s aggregator property (which we do not
assume) and our smoothness assumptions (Section 2), it can be shown that our condition implies BM�s contraction
property. The converse holds if the aggregators are also �symmetric� (i.e., such that @hi (�) =@�i = @hj (�) =@�j
and

P
k 6=i (@hi (�) =@�k) =

P
k 6=j (@hj (�) =@�k) for all i; j and �) and the environment satis�es our Assumption 2.

Environments with symmetric aggregators include the examples in Section 2.1, where our condition also coincides
with Chung and Ely�s (2001) su¢ cient condition for environments with linear aggregators.
12Quadratic-linear models are common in the literature, as they ensure linear best-responses. Examples include

social interactions models (e.g., Blume et al., (2015)), markets with network externalities (e.g., Fainmesser et al.,
(2015)), supply function competition (e.g., Vives (2011)), divisible good auctions (e.g., Wilson (1979)) and public
goods (e.g., Duggan and Roberts (2002)).
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is equivalent to truthful revelation being strictly dominant in the interim normal form of the

Bayesian game.) Since, in the following, the common prior assumption is maintained, we will take

expectations without making the prior explicit. So, for instance, given a function Li : ��i ! R,
we will simply write E (Li (��i) j�i) instead of

R
��i

Li (��i) dp (�j�i).

Independent Types. In an independent common prior model, for any Li : ��i ! R, the
condition E (Li (��i) j�i) = fi (�i) holds true with fi : �i ! R s.t. f 0i = 0 (by the de�nition of

independence). Hence, since Li can be chosen freely in common prior models, independence leaves

us enough leeway to manipulate the external e¤ects on the RHS of Condition 2 of Theorem 2,

without a¤ecting the LHS. In particular, the ex-post condition of Remark 2 can be rewritten as:

����� @2vi
@x@�i

(d (m) ;m)

�
@d

@�i
(m)

����>X
j 6=i

������ @2vi
@x@�j

(d (m) ;m)

�
@d

@�i
(m) +

@Li
@mj

(m�i)

���� : (11)

Hence, in this case we can completely neutralize the strategic externalities, setting the RHS of this

inequality equal to zero, by choosing L̂i such that

@L̂i
@mj

(m�i) =

�
@2vi
@x@�j

(d (m) ;m)

�
@d

@�i
(m) for all m and j 6= i; (12)

or L̂i (m�i) =
X
j 6=i

�
@2vi
@x@�j

(d (m) ;m) �mj

�
@d

@�i
(m) : (13)

(Equations (12) and (13) are well-de�ned because Assumption 2 ensures that the RHS of (12) is

constant in mi). Hence, the following Proposition holds:

Proposition 3 In SCC-PC environments with an independent common prior, the following trans-
fers ensure full implementation in interim dominant strategies:

t�i (m) = t�i (m)| {z }
canonical transfers

+ L̂i (m�i)mi| {z }
compensation for
strategic externality

(depends on mi and m�i)

�
Z mi

�i

E
�
L̂i (��i) jsi

�
dsi:| {z }

belief-based adjustment: cumulative
expected marginal compensation

(only depends on mi)

(14)

To understand the logic of the mechanism, consider the function L̂i (m�i) de�ned in (13): The

term in parenthesis represents the e¤ect of j�s report on i�s marginal utility for x, and is multiplied

by the impact of i�s report on the allocation. Overall, this is the total strategic externality that

agent i is subject to, for each increment of his own report. The transfers in (14) therefore are such

that, starting from the canonical direct mechanism, agent i is compensated for the total strategic

externality that other players impose on him. The last term in (14) is the expected marginal

e¤ect on such a compensation, when i reports mi. This term is added to prevent the agent from

misreporting his type, in order to in�ate the compensation for the strategic externality. Hence, the

�rst term eliminates the strategic externalities, and the second restores incentive compatibility.

A¢ liated Types. Under the maintained assumptions for SCC-PC environments, and if valua-

tions are supermodular (that is, 0 < @2vi
@x@�j

(x; �) < 1 for all i,j, x and �), the moment functions
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L̂i : ��i ! R de�ned in (13) are strictly increasing in mj for each j 6= i. Then, if types are

a¢ liated, Theorem 5 in Milgrom and Weber (1982) implies that E(L̂i (��i) j�i) is increasing in �i.
Hence, letting f̂i (�) � E(L̂i (��i) j�), the moment condition � = (L̂i; f̂i) 2 % (B) satis�es f̂ 0i > 0 for
all i. By construction, L̂i is such that the RHS of Condition 2 in Theorem 2 is equal to zero. Since

f̂ 0i > 0, SCC implies that the LHS of the same condition is positive. The next result follows:

Proposition 4 In SCC-PC environments with a¢ liated types and supermodular valuations, the
transfers in (14) ensure full implementation in interim dominant strategies.

Equivalence of EPIC and DS-implementability. The results above can also be used to derive

an equivalence between ex-post incentive compatibility and dominant strategy implementation:

Proposition 5 In independent common prior environments that satisfy Assumptions 1 and 2, an
allocation function is interim dominant strategy implementable if and only if the canonical direct

mechanism is strictly ex-post incentive compatible. If valuations are supermodular, the equivalence

extends to a¢ liated types.

In the proof (see Appendix), �rst, we show that an allocation rule is interim dominant strategy

implementable only if it is strictly increasing. The �only if� part then follows from Lemma 2.

Conversely, if (d; t�) is strictly EPIC, then d is strictly increasing by Lemma 2. Propositions 3 and

4 in turn imply that the allocation rule is interim dominant strategy implementable.

Proposition 5 is related to results by Manelli and Vincent (2010, MV) and Gershkov et al.

(2013) which show that, in Bayesian environments with private values, for any interim incentive

compatible mechanism there is an �equivalent�mechanism that is dominant strategy incentive com-

patible. Given the restriction to private values, those results can be interpreted as an equivalence

between �partial�and �full�implementation in direct mechanisms. From this viewpoint, Proposi-

tion 5 can be seen as a generalization of that insight to Bayesian environments with interdependent

values.13 MV�s notion of equivalence, however, is di¤erent from ours. In particular, MV de�ne

two mechanisms as �equivalent� if they deliver the same interim expected utilities for all agents

and the same ex-ante expected social surplus. Here instead we maintain the traditional notion of

equivalence, which requires that the mechanisms induce the same ex-post allocation. (As shown

by Gershkov et al. (2013), equivalence results à la MV do not extend beyond environments with

linear utilities and independent types.)

5.1.2 Moment Conditions without a Prior

In real-world problems of mechanism design, the designer�s information typically does not take the

form of a common prior distribution on agents�types. For instance, when the designer�s information

is based on econometric estimates, and if such estimates are assumed common knowledge, then

the belief restrictions B are naturally represented directly in terms of a set of moment conditions
(cf. Section 2.2). In these cases, it may be interesting to ask which moments it would be useful

to estimate, provided they are common knowledge.14 The next result shows that, in SCC-PC

environments, the conditional expectations E (�j j�i) are all is needed for the implementation result:
13We are grateful to Stephen Morris for this insight.
14Ollár and Penta (2017) consider a di¤erent non-Bayesian setting, in which types are commonly believed to

follow the same distribution, but the distribution itself is unknown.
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Proposition 6 Consider a SCC-PC environment with supermodular valuations. Let the belief

restrictions �B be such that only common knowledge of the conditional expectactions E (�j j�i) is
maintained, for all i and j. If such conditional expectations are di¤erentiable and non-decreasing

in �i for each i and j, then the transfers in (14) ensure �B-implementation in �B-dominant strategies.

The proof, in the Appendix, is based on the observation that the function L̂i : ��i ! R
de�ned in (13) is linear if the environment satis�es the SCC-PC conditions. Hence, if the con-

ditional expectations E (�j j�i) are common knowledge in �B, so are the conditional expectations
E(L̂i (��i) j�i), which can thus be used as moment conditions to weaken the strategic externalities,
similar to what we did for the common prior environments in Propositions 3 and 4.

5.1.3 Discussion

The logic of Propositions 3, 4 and 5 extends beyond the cases of common prior models with

independent or a¢ liated types. To see this, notice that for L̂i : ��i ! R de�ned in eq. (13),

the maintained assumptions for SCC-PC environments guarantee that the RHS of Condition 2

in Theorem 2 is equal to zero. A¢ liation or independence further guarantee that the conditional

moment E(L̂i (��i) j�i) is non-decreasing in �i Hence, letting f̂i (�i) := E(L̂i (��i) j�i), the moment
condition � = (L̂i; f̂i)i2I can be used with no risk of upsetting the LHS of Condition 2 in Theorem

2. This argument, however, remains valid whenever E(L̂i (��i) jmi) <
@Wi

@mi
(m; �) for all m, which

ensures that both conditions of Theorem 2 are satis�ed by � = (L̂i; f̂i)i2I . In Proposition 6,

the assumption that E (�j j�i) are non decreasing in �i plays the same role as the assumptions of
independence and a¢ liation in the common prior models, and can be weakened similarly.

Assumption 2 may also be weakened in Propositions 3, 4 and 6. In the argument above,

we used the assumption to ensure @Wi=@mi < 0 and that L̂i could be designed to completely

neutralize the strategic externalities of the canonical direct mechanism. Clearly, @Wi=@mi < 0 can

be guaranteed by weaker conditions. If Assumption 2 is violated, however, then we may not be

able to completely o¤set the strategic externalities. But if
��@2d=@�i@�j�� and the variations of the

valuations�concavity are small relative to j@Wi=@mij, then L̂i can still be chosen so that the RHS
of (11) is bounded above by j@Wi=@mij, and the argument remains valid. The only di¤erence is
that full implementation would not occur in one round of B-Rationalizability: that is, the transfers
would ensure B-implementation, but not in B-dominant strategies.

5.2 Sensitivity Analysis and Approximate Moment Conditions

The implementation result in Theorem 2 is �robust� in the sense that only common knowledge

of a certain moment condition is required. But what if such a moment condition is not exactly

satis�ed? How sensitive are the implementation results to possible misspeci�cations of the moment

condition? In this section we show that our design strategy also ensures that the mechanism is

well-behaved with respect to small misspeci�cations of the moment conditions.

Example 8 (Sensitivity Analysis) Consider the environment in Example 2. Adopting the de-
sign strategy of Theorem 2, we showed that the strategic externalities of the VCG mechanism could

be su¢ ciently reduced, so as to induce contractive best responses, adopting the moment condition
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�E (�k � �j j�i) = 0. But what if 
�E (�k � �j j�i) is only within " of 0, so that the moment condi-
tion is not exactly satis�ed? Then, for any �i, the set of rationalizable reports consistent with com-

mon belief that 
�E (�k � �j j�i) 2 [0� "] := [�";+"] is equal to RBi (�i) =
h
�i � 1

(1�j
+�j)� � "
i
.�

Thus, small misspeci�cations of the moment condition induce small misreports, and hence

(given the continuity of d) small misallocation relative to the designer�s objective. Moreover, the

impact of misspeci�ed moment conditions is decreasing in j
 + �j, which measures the strategic
externalities in the belief-based mechanism (and such that j
 + �j < 1 in Ex.2), and increasing in
the concavity in own-action, captured by � � (1+
+�) > 0. Thus, the resilience to such misspec-
i�cations is improved by mechanisms with smaller strategic externalities, and maximally so if they

achieve B-DS implementation, or by mechanisms with larger concavity in own action. (In Ex.1,
the rationalizable reports if the moment condition is misspeci�ed are RBi (�i) = [�i � "= (1 + 
)]).

Our next result generalizes these insights. In particular, we show that concave mechanisms with

limited strategic externalities ensure continuity with respect to misspeci�cations of the moment

conditions, and we characterize the impact of such misspeci�cations, relating it to the strength

of the strategic externalities. To this end, consider the transfers in (10), and suppose that � =

(Li; fi)i2I satis�es the conditions of Theorem 2. Then, for any �i 2 �i, we de�ne the smallest
own-concavity and strongest strategic externality for �i, respectively as:

OC�i (�i) := min
(m0

i;�)2Mi�CB�
�i

Z
M�i���i

����@Wi

@mi
(m0

i;m�i; �i; ��i)� f 0i (m0
i)

���� d� and
SE�i (�i) := max

(m0
i;�)2Mi�CB�

�i

X
j 6=i

Z
M�i���i

����@Wi

@mj
(m0

i;m�i; �i; ��i) +
@Li
@mj

(m�i)

���� d�.
We also de�ne the overall own-concavity and normalized strategic externalities, respectively,

as OC� := mini2I;�i2�i
OC�i (�i), and NSE

� = maxi2I;�i2�i

SE�
i (�i)

OC�
i (�i)

. (In Examples 2 and 8,

OC� = � and NSE� = j� + 
j < 1. In Examples 1 and 7, NSE� = 0 and OC� = j1 + 
j).
Notice that OCi (�i) and SEi (�i) correspond, respectively, to the LHS and RHS of Condition 2 in

Theorem 2. Hence, under the conditions of Theorem 2, OC� > 0 and NSE� 2 [0; 1). In this case,
best responses are contractive, and more so as NSE� gets smaller. The di¤erence (1�NSE�)
therefore provides a measure of contractiveness. We next show that these terms also capture the

sensitivity to misspeci�cations of the moment condition �:

Theorem 3 Suppose that � = (Li; fi)i2I satis�es Conditions 1 and 2 of Theorem 2, but it is only

approximately satis�ed in B: that is, for all i; �i and bi 2 B�i Ebi (Li (��ij�i)) 2 [fi (�i)� "] for
some " > 0. Then, the transfers (t�i )i2I de�ned in (10) achieve �almost truthful�B-implementation.
That is, for all i and �i 2 �i, RBi (�i) �

h
�i � 1

(1�NSE�)OC� "
i
:

This result implies a convenient continuity property: as the misspeci�cation of the moment

condition vanishes (" ! 0), the mechanism approaches truthful implementation. Moreover, for

given " > 0, deviations from truthful implementation decrease with the own-concavity and in-

crease with the strategic externalities. The latter e¤ect is minimal when NSE� = 0, that is if

the mechanism achieves dominant-strategy implementation. Hence, Theorem 3 provides further

reasons for pursuing the design of concave mechanisms with limited strategic externalities.

Theorem 3 can also be seen as a generalization of Theorem 2 to accommodate �approximate�

moment conditions. Formally, for any B and " � 0, let % (B; ") denote the set of moment conditions
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that are �approximately consistent�with B: � = (Li; fi)i2I 2 % (B; ") if and only if for all i; �i and
bi 2 B�i Ebi (Li (��ij�i)) 2 [fi (�i)� "]. Clearly, % (B; 0) = % (B) and the set % (B; ") increases with
": for any B, "0 > " implies % (B; ") � % (B; "0). Then:

Corollary 2 Let � = (Li; fi)i2I 2 % (B; ") satisfy Conditions 1 and 2 of Theorem 2. Then, the

transfers (t�i )i2I de�ned in (10) ensure that for all i and �i 2 �i, RBi (�i) �
h
�i � 1

(1�NSE�)OC� "
i
.

Hence, for �exact�moment conditions (" = 0), we obtain the truthful implementation result

of Theorem 2 as a special case. As " increases and approximate moment conditions are included,

misreports are possible, but they remain small and thus (given the continuity of d) ensure that the

allocation stays close to the designer�s objective. Corollary 2 thus suggests a notion of approxi-

mate implementation reminiscent of virtual implementation, but with the di¤erence that here the

allocation is guaranteed to be nearby in the allocation space, rather than the space of lotteries.

6 Related Literature

Our work is related to several strands of the literature in game theory and mechanism design. We

brie�y discuss the most closely related literature.

Solution Concept. As explained in Section 3, B-Rationalizability is a special case of �-
Rationalizability (Battigalli (2003) and Battigalli and Siniscalchi (2003)), and generalizes several

versions of rationalizability for incomplete information games, including Bergemann and Morris�

(2009a) �belief-free�version (obtained letting B = BBF ) and Dekel, Fudenberg and Morris�(2007)
�interim correlated rationalizability�(ICR), if B is a standard Bayesian model. ICR has also been
studied by Weinstein and Yildiz (2007, 2011, 2013) and Penta (2012, 2013). Battigalli et al. (2011)

provide a thorough analysis of the connections between these and other versions of rationalizability.

Full Implementation. Within the vast literature on full implementation, the closest papers
are Bergemann and Morris (2009a) and Oury and Tercieux (2012), which study implementation in

�belief free�rationalizability and ICR, respectively. Both �belief free�and ICR-implementation are

special cases of ours, with the proviso that Oury and Tercieux (2012) do not restrict attention to

direct mechanisms. The restriction to direct mechanisms is also shared by Bergemann and Morris

(2009a), while Bergemann and Morris (2011) study belief-free implementation in general mecha-

nisms. Within the classical literature, Jackson (1991) and Postlewaite and Schmeidler�s (1986) are

also connected, as our results imply Bayes-Nash implementation in Bayesian environments. From a

conceptual viewpoint, our departure from that literature is inspired by Jackson�s (1992) critique of

unbounded mechanisms, although we push the concern for �relevance�a bit further, requiring that

full implementation be achieved via transfer schemes.15 In a complete information setting with

quadratic preferences, Bergemann and Morris (2007) show that an ascending auction may reduce

strategic uncertainty relative to its sealed-bid counterpart, thereby making full implementation

easier (in the symmetric example with n agents, full implementation is possible in the ascending

auction if 
 < 1, as opposed to 
 < 1=(n� 1) in the static auction.) That insight, however, relies
on the complete information assumption (see Penta (2015)) and is orthogonal to the reduction of

strategic externalities we pursue here (which ensures implementation for all 
 in the examples).

15D�Aspremont, Cremer and Gerard-Varet (2005) also studied full implementation in environments with trans-
ferable utility, but they resort to unbounded mechanisms of the kind criticized above. Duggan and Roberts (2002)
fully implement the e¢ cient allocation of pollution via transfers, but under complete information and richer reports.
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Robust Mechanism Design. As already discussed, most of the literature on robust mech-
anism design has focused on the belief-free case (see footnote 2). In particular, Bergemann and

Morris (2005, 2009a,b) study belief-free implementation in static settings, respectively in the par-

tial, full and virtual implementation sense. The belief-free approach has been extended to dynamic

settings by Mueller (2015) and Penta (2015). Penta (2015) considers dynamic mechanisms in en-

vironments in which agents may obtain information over time, and applies a dynamic version

of rationalizability based on a backward induction logic (Penta (2011)). Mueller (2015) instead

considers virtual implementation via dynamic mechanisms, in the same (static) belief-free environ-

ments as Bergemann and Morris (2009b), using a stronger version of rationalizability with forward

induction. Thanks to the stronger assumptions on the belief revision policy, he shows that dynamic

mechanisms weaken the conditions for virtual implementation.

Beyond the belief-free literature, Guo and Yannelis (2016) and Lopomo et al. (2013) consider

belief restrictions analogous to ours, to study respectively full and partial implementation, but with

di¤erent notions of robustness that involve ambiguity. Artemov et al. (2013) also maintain some

restrictions on beliefs, but focus on virtual implementation. Jehiel et al. (2012) show that, under

certain restrictions on preferences, minimal notions of robustness are as demanding as the belief-

free case when types are multi-dimensional, and Jehiel et al. (2016) show that ex-post incentive

compatibility is generically impossible for multi-dimensional types. This suggests that, when B is
not a standard type space, the one-dimensionality of �i is important for our results.

Alternative approaches to robust mechanism design have been put forward by Börgers and

Smith (2012, 2014), who show the role of eliciting beliefs to weakly implement a correspondence in

a belief-free setting, or by Carroll (2015), Yamashita (2015) and Wolitzky (2016), who approach

robustness from a maxmin perspective. Kos and Messner (2015) also pursue the maxmin approach,

but in a setting in which � similar to one of our applications (Section 5.1.2) � only the types�

expected values are known.

Mechanism Design with Transferable Utility (TU). TU-environments are the typical
domain of the partial implementation literature. Within this area, the closest works are those that

allow for interdependent values (e.g., Cremer and McLean (1985, 1988), Dasgupta and Maskin

(2000), McLean and Postlewaite (2004)).16 In recent years, standard implementation problems

have been re-visited imposing extra desiderata on the mechanisms. Deb and Pai (2016), for in-

stance, pursue symmetry of the mechanism. Mathevet (2010) and Mathevet and Taneva (2013)

instead pursue supermodularity. In those papers, the extra desiderata are achieved by adding a

belief-dependent component to some baseline payments, much as we attain full implementation

appending an extra term to the canonical transfers.17 Those papers however maintain that types

are independently distributed, whereas we allow general correlations as well as weaker restrictions

on beliefs. At a more technical level, our design results in a contractive mechanism. Healy and

Mathevet (2013) also pursue contractiveness of the mechanism, but with complete information.

16McLean and Postlewaite (2002) also explore related ideas in environments without transferable utility.
17Early examples of this principle are the mechanisms of D�Aspremont and Gerard-Varet (1975) and of Cremer

and McLean (1985), which append the baseline VCG mechanism with a belief-based component in order to achieve
budget balance and surplus extraction, respectively.
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7 Concluding Remarks

The objective of full implementation is to solve the problem of multiplicity in mechanism design.

In this paper we developed an approach to full implementation which subsumes as special cases the

notions of belief-free (Bergemann and Morris, 2009a) and ICR-implementation (Oury and Tercioux,

2012), and accommodates more realistic assumptions on agents�beliefs, intermediate between the

�belief-free�and the classical Bayesian benchmarks. In Bayesian settings, which are standard in

the applied and classical literature, our conditions also ensure Bayes-Nash implementation (e.g.,

Jackson (1991)). The main innovation is that we achieve these results through mechanisms which

are as simple as those developed by the partial implementation literature, thereby bridging two

branches of the literature which have typically proceeded in parallel.

While largely inspired by the literature on belief-free mechanism design, we departed from it

in many ways. The capability of our framework to accommodate general belief restrictions was

key to go beyond the existing characterizations, and to provide constructive results on what can

still be achieved when agents� preferences violate the conditions for belief-free implementation.

The key idea is to focus on the strategic externalities rather than preferences, and to use moment

conditions to induce contractive best replies. Our results suggest a clear design principle: start

with the �canonical transfers� and then add a belief-based component to weaken the strategic

externalities which may otherwise impair the full implementation result. The resulting mechanism

is contractive and induces truthful revelation as the only rationalizable outcome.

As shown in Section 5.2, mechanisms with small strategic externalities ensure further robust-

ness properties, in that small misspeci�cations of the moment conditions result in allocations that

are proportionately close to the desired one. Though beyond the scope of this paper, this sug-

gests that the logic of our construction may be extended to moment conditions with inequalities.

The notion of �closeness�here is in terms of the natural allocation space, as opposed to the lot-

tery space of the virtual implementation literature, which points to a novel notion of approximate

implementation which may be of independent interest for future research.

Other directions for future research include extending the analysis to non-di¤erentiable alloca-

tion rules, such as for instance in standard auction problems. A sensible �rst step in this direction

might be to apply our analysis to smooth approximations of such non-di¤erentiable allocation

rules. But the idea of using belief-restrictions to weaken the strategic externalities seems more

broadly appealing, and there may be direct ways of formalizing it in the context of non-smooth

environments. The restriction to direct mechanisms also entails some loss of generality, and thus

stronger results could be obtained with more general mechanisms. But we already know that some

loss of generality is necessary, if we want to avoid the unrealistically complex mechanisms of the

classical literature. Thus, a key challenge in pursuing this direction of research is to combine the

increased generality with the ability to provide clear economic insights.

In Section 5 we discussed some implications of our main results for some special cases, such

as environments with single-crossing preferences, with and without common priors. In common

prior environments, we provided su¢ cient conditions for full implementation with independent and

correlated types, as well as for an equivalence of partially and fully implementable allocation rules.

In environments with �public concavity�, our construction indeed ensures that strategic externalities

are completely eliminated, thereby achieving dominant strategy implementation. When this is the

case, our results also imply max-min implementation (e.g., Carroll (2015) and Wolitzky (2016)).
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Appendix

A Proofs

Proof of Theorem 1: Let l := maxi;�i

n
maxmi2RB

i (�i)
jmi � �ij

o
denote the largest distance

between the truthful and some other rationalizable report, across all types. Note that l is well-

de�ned by properties of � and by the maintained assumptions on v, d and t. By contradic-

tion, suppose that l > 0, and let i, ��i and m
�
i 2 RBi (�

�
i ) be such that jm�

i � ��i j = l. Since

m�
i 2 RBi (�

�
i ), 9� 2 CB��i

\ �
�
RB�i

�
: m�

i 2 argmaxmi
EU���i

(mi) (this standard �xed-point

property of B-rationalizability follows from the maintained assumptions on v, d and t, which

ensure that our mechanisms induce compact games with bounded and continuous payo¤ functions

(e.g., Arieli (2010).) By B-IC we also know that �i 2 RBi (�i) for all �i and i, hence the set of
truthtelling conjectures CTi := f� s.t. � f(��i;m�i) : m�i = ��ig = 1g � �

�
RB�i

�
. Let �� 2 CTi

be s.t. marg��i�
� =marg��i�. Then, B-IC implies that ��i 2 argmaxmi

EU�
�

��i
(mi).

By the strict concavity assumption, best responses are unique and minimize the absolute value

of the derivative of the expected utility function. We examine the di¤erence in the �rst order

conditions at the optimum for � and ��, for the case in which m�
i > �

�
i (the proof is analogous for

m�
i < �

�
i ):

@EU�

��
i

@mi
(m�

i )�
@EU��

��
i

@mi
(��i ), where for any �i;mi; and �,

@EU��i
@mi

(mi) =

Z
M�i���i

@Ui
@mi

(mi;m�i; �i; ��i) d�: (15)

Since, by assumption, EU���i (mi) is strictly concave and maximized at m�
i , whereas EU

��

��i
(mi)

is strictly concave and maximized at ��i , if m
�
i > �

�
i it follows that

@EU�

��
i

@mi
(m�

i ) �
@EU��

��
i

@mi
(��i ) � 0.

Using (15), this can be rewritten as:Z
M�i���i

@Ui
@mi

(m�
i ;m�i; �

�
i ; ��i) d��

Z
M�i���i

@Ui
@mi

(��i ;m�i; �
�
i ; ��i) d�

� � 0

Next, we add and subtract
R
M�i���i

@Ui
@mi

(��i ;m�i; �
�
i ; ��i) d�, and rearrange terms to obtain:

Ai :=
Z
M�i���i

@Ui
@mi

(��i ;m�i; �
�
i ; ��i) d��

Z
M�i���i

@Ui
@mi

(m�
i ;m�i; �

�
i ; ��i) d�

�
Z
M�i���i

@Ui
@mi

(��i ;m�i; �
�
i ; ��i) d��

Z
M�i���i

@Ui
@mi

(��i ;m�i; �
�
i ; ��i) d�

� =: Bi:

By the mean value theorem, there exists m0
i 2 [��i ;m�

i ] such that:

Ai =

 Z
M�i���i

@2Ui
@2mi

(m0
i;m�i; �

�
i ; ��i) d�

!
� (��i �m�

i ) :

Since l = (m�
i � ��i ) > 0, and expected payo¤s are strictly concave, this can be written as:

Ai =

�����
Z
M�i���i

@2Ui
@2mi

(m0
i;m�i; �

�
i ; ��i) � d�

����� � l:
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Since marg��i�
� =marg��i� and �

� 2 CTi , the term Bi can be written as:

Bi =
Z
M�i���i

@Ui
@mi

(��i ;m�i; �
�
i ; ��i) d��

Z
M�i���i

@Ui
@mi

(��i ; ��i; �
�
i ; ��i) d� �

�
Z
M�i���i

X
j 6=i

����� @2Ui
@mi@mj

(��i ;m�i; �
�
i ; ��i)

���� � j�j �mj j
�
d�

�
Z
M�i���i

X
j 6=i

���� @2Ui
@mi@mj

(mi;m�i; �
�
i ; ��i)

���� d� � l,
where the �rst bound follows from the mean-value theorem (applied to @Ui=@mi and m�i) and

the triangle inequality, whereas the second bound follows from the maximality of l. Since, from

above, Ai � Bi, we have that�����
Z
M�i���i

@2Ui
@2mi

(m0
i;m�i; �

�
i ; ��i) � d�

����� �
Z
M�i���i

X
j 6=i

���� @2Ui
@mi@mj

(mi;m�i; �
�
i ; ��i)

���� d�;
which contradicts the B-LSE condition for i. �

Proof of Lemma 1: If the direct mechanims (d; t) is ex-post incentive compatible, then the �rst-
order conditions, which guarantee that truthful revelation is an ex-post equilibrium, imply that�
@vi
@x (d (m) ; �) �

@d
@�i
(m) + @ti

@mi
(m)

� ����
m=�

= 0 for all i and �. Hence @ti
@mi

(�) = �@vi
@x (d (�) ; �) �

@d
@�i
(�) for all �. Integrating over mi, it follows that for every m,

ti (mi;m�i) = �
Z mi

�i

@vi
@x

(d (s;m�i) ; s;m�i) �
@d

@�i
(s;m�i) ds+K (m�i) : (16)

For every i, let $i : �! R be s.t. $i (�i; ��i) = vi (d (�i; ��i) ; �i; ��i), and notice that

@$i
@�i

(�i; ��i) =
@vi
@x

(d (�i; ��i) ; �i; ��i) �
@d

@�i
(�i; ��i) +

@vi
@�i

(d (�i; ��i) ; �i; ��i) :

Thus (16) can be rewritten as

ti (mi;m�i) = �
Z mi

�i

@$i
@�i

(s;m�i) ds+

Z mi

�i

@vi
@�i

(d (s;m�i) ; s;m�i) ds+K (m�i) =

= �vi (d (mi;m�i) ;mi;m�i)

+

Z mi

�i

@vi
@�i

(d (s;m�i) ; s;m�i) ds+K (m�i) + vi (d (�i;m�i) ; �i;m�i) :

Recall the canonical transfers t� as in (8) and notice that the result follows by letting ��i (m�i) =

K (m�i) + vi (d (�i;m�i) ; �i;m�i). �

Proof of Proposition 1: The �if�part is immediate. For the �only if�, suppose that d is belief-free
implemented by a direct mechanism with transfer scheme t. Then, the direct mechanism (d; t) is

strictly ex-post incentive compatible and Lemma 1 implies that ti (m) = t�i (m)+�i (m�i) for some
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�i : M�i ! R. Hence, (d; t) and the canonical direct mechanism (d; t�) induce the same ex-post

best responses, and hence the same sets of belief-free Rationalizable strategies. The canonical

direct mechanism therefore also belief-free implements d. �

Proof of Theorem 2: The proof is as explained in the main text: with transfers as in (10),
truthful revelation satis�es the �rst-order conditions for any � 2 CTi . Condition 1 in Theorem
2 ensures the strict concavity condition in Theorem 1, and so the second order conditions are

also satis�ed. The mechanism therefore is B-IC. Condition 2 in the Theorem implies the B-LSE
Condition of Theorem 1. The result thus follows from Theorem 1. �

Proof of Lemma 2: Notice that in the canonical direct mechanism,

@Ui
@mi

(m; �) =

�
@vi
@x

(d (m) ; �)� @vi
@x

(d (m) ;m)

�
@d

@�i
(m) =:Wi (m; �) : (17)

hence, if opponents are truthful, then truthful revelation satis�es the necessary �rst-order

conditions: that is, Wi (�; �) = 0. Furthermore, the second order derivative is

@2Ui
@2mi

(m; �) =
@Wi

@mi
(m; �) =

��
@2vi
@2x

(d (m) ; �)� @
2vi
@2x

(d (m) ;m)

�
@d

@�i
(m)� @2vi

@x@�i
(d (m) ;m)

�
@d

@�i
(m)

+

�
@vi
@x

(d (m) ; �)� @vi
@x

(d (m) ;m)

�
@2d

@2�i
(m) : (18)

which at m = � simpli�es to:

@2Ui
@2mi

(�; �) = � @2vi
@x@�i

(d (�) ; �)
@d

@�i
(�) :

Under the single crossing condition as in Assumption 1, @2vi
@x@�i

(d (�) ; �) > 0, hence the necessary

second-order conditions for a local maximum are satis�ed only if @d
@�i
(�) � 0.

If (d; t�) is strictly EPIC, then @d
@�i
(�) � 0 must hold for all i and �i. However, @d

@�i
(�) = 0

can only hold for isolated points. To show this, consider that @d
@�i
(si; ��i) = 0 for some interval

si 2 (�i; �i + "), where " > 0. Then, the FOC Wi (�; �) =Wi (si; ��i; �) = 0 and all si 2 (�i; �i + ")
ensure the same utility as reporting the true type �i, which contradicts strict EPIC. Hence d can

not be constant on an interval, therefore d is strictly increasing in all �i.

In the other direction, if d is strictly increasing, a report mi can satisfy the FOC given �i and

m�i = ��i,Wi (mi; ��i; �) = 0, if either term in (17) is 0. By the single crossing condition, the �rst

term is 0 if and only if mi = �i. The second term can be 0 for some mi 6= �i if @d
@�i
(mi; ��i) = 0.

Hence, the FOC for i�s optimization problem, when the state is � and the opponents report

truthfully, can only be satis�ed by (i) mi = �i and by (ii) mi 6= �i s.t. @d
@�i
(mi; ��i) = 0. We show

next that only the �rst case satis�es the second-order conditions for a local optimum.

Case (i): Considermi = �i. Then, either @2Ui
@2mi

(�; �) < 0 (which implies that truthful revelation

is a strict local optimum), or @d
@�i
(�) = 0. But since d is strictly increasing, it may have a zero

derivative only at an isolated point. Hence, there exists a neighborhood around �i such that for

all si 6= �i in this neighborhood, @d
@�i
(si; ��i) > 0. This in turn implies that Ui (�; ��i; �) is strictly

concave around �i, and hence truthful revelation is a strict local optimum.

Case (ii): Suppose thatmi 6= �i is such that @d
@�i
(mi; ��i) = 0. Then, by (18), @

2Ui
@2mi

(mi; ��i; �) =
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�
@vi
@x (d (mi; ��i) ; �)� @vi

@x (d (mi; ��i) ;mi; ��i)
�
@2d
@2�i

(mi; ��i). By the single crossing condition,

the term in parenthesis has the same sign aroundmi in a neighborhood away from �i. If @d@�i (mi; ��i) =

0, the di¤erentiability and strict monotonicity of d implies that d switches convexity at mi, and

its second order derivative is negative to the left of mi, and positive to the right of mi. It follows

that @2Ui
@2mi

(�; ��i; �) switches sign at mi, and hence mi 6= �i is not optimal if @d
@�i
(mi; ��i) = 0.

Given that the FOC for an interior optimum can only be satis�ed at (i) and (ii), to show

that (i) is the global optimum, it su¢ ces to show that the end points �i and �i are not optimal

for interior types. The single crossing condition and the strict monotonicity of d imply that the

right-derivative of Wi (�i; ��i; �) is positive, thus �i is not optimal, and that the left-derivative of

Wi

�
�i; ��i; �

�
is negative, thus �i is not optimal. Strict EPIC follows. �

Proof of Proposition 2: By Lemma 2, in SCC-environments the canonical direct mechanism
is strictly ex-post incentive compatible, and if @Wi

@mi
(m; �) < 0, it also satis�es the strict concavity

condition of Theorem 1 for B = BBF . The result then follows directly from Corollary 1. �

Proof of Proposition 3: (Step-1): Note that in SCC-PC environments, for any i and j, we

have that @Wi

@mj
(m; �) = � @2vi

@x@�j
(d (m) ;m) @d@�i (m) and in particular

@Wi

@mi
(m; �) < 0 for all m; �.

For L̂i : ��i ! R de�ned as in (13), the independent common prior implies that, for f̂i (�i) :=
E(L̂i (��i) j�i), we have f̂ 0i (�i) = 0 for all �i. Hence, Condition 1 of Theorem 2 holds.

(Step-2): By construction, @Wi

@mj
(m; �) = � @L̂i

@mj
. Hence, the RHS of Condition 2 of Theorem 2

is 0 for all �i, and hence smaller than the LHS (which therefore satis�es Condition 2). Since both

conditions of Theorem 2 are satis�ed, the transfers in (14) ensure full implementation. Moreover,
@Wi

@mj
(m; �) = � @L̂i

@mj
also ensures that i�s expected payo¤s in the modi�ed mechanism, and hence

the set of best replies, are constant in mj for all j 6= i. But since �i is the unique best reply to all
conjecture that assign probability one to others�truthful reports, if also follows that RB;1�i

= f�ig
for all �i and i. Hence, full implementation is achieved in dominant strategies. �

Proof of Proposition 4: As noted in the previous proof, @Wi

@mj
(m; �) = � @2vi

@x@�j
(d (m) ;m) @d@�i (m)

for all i and j in in SCC-PC environments. For L̂i : ��i ! R de�ned as in (13), and f̂i (�i) :=
E(L̂i (��i) j�i), Theorem 5 in Milgrom and Weber (1982) implies that, if valuations are supermod-

ular, f̂ 0i (�i) � 0 for all �i. Since, by the assumptions of SCC-environments @Wi

@mi
(m; �) < 0, it

follows that @Wi

@mi
(m; �) � f 0i (mi) < 0 for all m; �, which implies that Condition 1 of Theorem 2

holds. The rest of the proof is identical to Step-2 of the proof of Proposition 3. �

Proof of Proposition 5: If (d; t�) is strictly EPIC, then d is strictly increasing (by Lemma 2)
and B-DS implementability follows from Propositions 3 and 4. For the other direction, if d is B-DS
implementable, then there exist transfers tDS that guarantee that truthful revelation is the only

interim best response, regardless of the opponents�strategies. Hence, for all �i,

f�ig = arg max
�0i2Mi

Z
��i

Ui (�
0
i;m�i; �i; ��i) db�i for all m�i,

where b�i is s.t. B�i = fb�ig from the common prior assumption. The necessary condition for this

best response is that for all i, for all �i and for all m�i 2M�i,
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 Z
��i

�
@vi
@x

(d (m) ; �) � @d
@�i

(m)

�
db�i +

@tDSi
@mi

(mi;m�i)

!����
mi=�i

= 0 hence,

@tDSi
@mi

(�i;m�i) = �
Z
��i

@vi
@x

(d (�i;m�i) ; �i; ��i) db�i �
@d

@�i
(�i;m�i) :

Using this property of the transfers, the second order partial derivative of the interim payo¤s is

the expected value of (18), which by Assumption 2 at mi = �i simpli�es toZ
��i

@2Ui
@2mi

(�i;m�i; �) db�i = �
@d

@�i
(�i;m�i) �

Z
��i

�
@2vi
@x@�i

(d (�i;m�i) ; �i;m�i)

�
db�i :

By the single crossing condition in Assumption 1, the second order conditions are satis�ed only

if @d
@�i
(m) � 0. However, @d

@�i
(�) = 0 can only hold for isolated points, and so d must be strictly

increasing. To show this, suppose (by means of contradiction) that there exists �i and " > 0 and

some s�i such that @d
@�i
(si; s�i) = 0 for all si 2 (�i; �i + "), which also implies for Wi (as given by

(17)) that Wi (si; s�i; �) = 0 for all si 2 (�i; �i + "). Thus for the FOC,
R
��i

Wi (�is�i; �) db�i =R
��i

Wi (si; s�i; �) db�i = 0 for all si 2 (�i; �i + "), in other words, any such si ensures the same
expected payo¤ as reporting the true type �i, hence contradicting B-DS implementation. Hence d
is strictly increasing for all �i and hence (d; t�) is strictly EPIC (by Lemma 2). �

Proof of Proposition 6: For each i; j, let 'jji : �i ! �j be such that, for each �i 2
�i, 'jji (�i) := E (�j j�i). By assumption, the functions 'jji are di¤erentiable. Then, the de-
signer�s information is represented by belief restrictions �B = (( �B�i)�i2�i)i2I such that �B�i =�
� 2 �(��i) : E� (�j) = 'jji (�i) for all j 2 In fig

	
, for each i 2 I and �i 2 �i. Next notice

that, in SCC-PC environments, the function L̂i : ��i ! R de�ned in (13) is linear. Hence,

if the conditional expectations E (�j j�i) are common knowledge in �B, so are the conditional ex-
pectations E(L̂i (��i) j�i), which are thus �moment conditions� that can be used to weaken the
strategic externalities. Formally, let f̂i (�i) := L̂i(('jji (�i))j2Infig). Then, because of the linearity

of the E (�) operator and of L̂i : ��i ! R, we have that E(L̂i (��i) j�i) = f̂i (�i) for all i, that is
� = (L̂i; f̂i)i2I 2 %

�
�B
�
. Moreover, f̂i is non-decreasing if so are the functions 'jji. The result then

follows from Theorem 2 for the same reasons as Proposition 4 does. �

Proof of Theorem 3: Fix i and �i. Let l := maxk2I lk. By the de�nition of t�, for any � 2 CB�i ,
adding and subtracting Li (��i), applying Leibniz�s rule and the triangle inequality, we have:����@EU��i@mi

(�i)

���� =
�����
Z
��i�M�i

�
@vi
@x

(d (�i;m�i) ; �)�
@vi
@x

(d (�i;m�i) ; �i;m�i)

�
@d

@�i
(�i;m�i)+

+Li (m�i)� Li (��i) + Li (��i)� fi (�i) d�j

�
Z
��i�M�i

X
j 6=i

���� @2Ui
@mi@mj

(�; �i; s�i)

���� j�j �mj j d�+ " � SE�i (�i) � l + ": (19)

For any mi 2 RB;1i (�i), there exists � 2 CB�i such that mi 2 BR�i (�). Since mi is best reply, it

minimizes the �rst-order partial derivative. Using (19) and by the concavity of the expected utility

function, it follows that for all � 2 CB�i ,
����@EU�

�i

@mi
(mi)�

@EU�
�i

@mi
(�i)

���� � SE�i (�i) � l + ". By the mean
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value theorem, there exists si 2 Mi such that
���@2EU��i=@2mi

�
(si)
�� jmi � �ij � SE�i (�i) � l + ".

Therefore, for all �i and mi 2 RB;1i (�i),

jmi � �ij �
SE�i (�i) � l + "
OC�i (�i)

: (20)

Then, for any mi 2 RB;2i (�i), there exists � 2 CB�i \ R
B;1
i (�i) such that m�

i 2 BR�i (��). For
the Taylor-expansion of @EU��i=@mi at �i around mi there exists si 2Mi such that:

@EU��i
@mi

(�i) =
@EU��i
@mi

(mi) +
@2EU��i
@2mi

(si) (�i �mi) :

Since mi is best reply to � and EU
�
�i
(mi) is strictly concave, we have that�����@2EU
�
�i

@2mi
(si)

����� j�i �mij �
����@EU��i@mi

(�i)

���� : (21)

Consider the RHS of (21) and bound it similarly to (19), by adding and subtracting Li (��i),

applying Leibniz�s rule and the triangle inequality, to get����@EU��i@mi
(�i)

���� � Z
��i�M�i

X
j 6=i

���� @2Ui
@mi@mj

(�; �i; s�i)

���� j�j �mj j d�+ ": (22)

Let (h; �h) := argmaxi2I;�i2�i
SE�i (�i) =OC

�
i (�i) and ŜE

�
:= SE�h (�h), ÔC

�
:= OC�h (�h). Hence,

NSE� = ŜE
�

ÔC
� . Combining (21), (22) and (20), we get

j�i �mij �
SE�i (�i)

OC�i (�i)

ŜE � l + "
ÔC

� +
"

OC�i (�i)

for all �i and mi 2 RB;2i (�i). By induction, at the kth round, for all �i and mi 2 RB;ki (�i),

j�i �mij �
�
SE�i (�i)

OC�i (�i)

�
(NSE�)

k�1 � l +
�
SE�i (�i)

OC�i (�i)

� k�2X
n=0

(NSE�)
n � "

ÔC
� +

"

OC�i (�i)

Condition 2 in Theorem 2 guarantees that NSE� < 1 and SE�i (�i) =OC
�
i (�i) < 1. Hence, taking

limits as k !1 and letting OC� := mini2I;�i2�i OC
�
i (�i), for all �i and mi 2 RBi (�i):

j�i �mij �
SE�i (�i)

OC�i (�i)

1

1�NSE�
"

ÔC
� +

"

OC�i (�i)

� NSE� 1

1�NSE�
"

OC�
+

"

OC�
=

1

1�NSE�
"

OC�
:

Hence, for all i and �i, RBi (�i) � [�i � "= ((1�NSE�)OC�)]. �

28



References

1. Aradillas-Lopez, A., A. Gandhi and D. Quint (2013) �Identi�cation and Inference in Ascend-

ing Auctions with Correlated Private Values,�Econometrica, Vol. 81, 489�534.

2. Ausubel, L. M., O. V. Baranov (2013) �Core-Selecting Auctions with Incomplete Informa-

tion,�mimeo.

3. Arieli, I. (2010), �Rationalizability in Continuous Games,� Journal of Mathematical Eco-

nomics, 46, 912�924.

4. Artemov, G., T. Kunimoto and R. Serrano (2013) �Robust Virtual Implementation with

Incomplete Information: Towards a Reinterpretation of the Wilson Doctrine,� Journal of

Economic Theory, 148, 424-447.

5. d�Aspremont, C., J. Cremer and L-A. Gerard-Varet (2005), �Unique Implementation in Auc-

tions and in Public Goods Problems,�economie publique 17, 125�139.

6. Battigalli, P. (2003), �Rationalizability in In�nite, Dynamic Games with Incomplete Infor-

mation,�Research in Economics, 57, 1�38.

7. Battigalli, P. and M. Siniscalchi (2003), �Rationalization and Incomplete Information ,�The

B.E. Journal of Theoretical Economics 3.

8. Battigalli P., A. Di Tillio, E. Grillo and A. Penta (2011), �Interactive Epistemology and

Solution Concepts for Games with Asymmetric Information,�The B.E. Journal of Theoretical

Economics: Vol. 11 (Advances), Article 6.

9. Bergemann D. and S. Morris (2005), �Robust Mechanism Design,�Econometrica 73, 1521�

1534.

10. Bergemann, D. and S. Morris (2007) �An Ascending Auction for Interdependent Values:

Uniqueness and Robustness to Strategic Uncertainty�, AEA papers and proceedings.

11. Bergemann, D. and S. Morris (2009a) �Robust Implementation in Direct Mechanisms,�Re-

view of Economic Studies, 76, 1175�1204.

12. Bergemann, D. and S. Morris (2009b) �Robust virtual implementation,�Theoretical Eco-

nomics, 4.

13. Bergemann, D. and S. Morris (2011) �Robust Implementation in General Mechanisms,�

Games and Economic Behavior, 71, 261�281.

14. Börgers, T. and D. Smith (2012) �Robustly Ranking Mechanisms�, American Economic

Review Papers and Proceedings, (2012) 325-329

15. Börgers, T. and D. Smith (2014), �Robust Mechanism Design and Dominant Strategy Voting

Rules,�Theoretical Economics, 9, 339-360

16. Blume, L. E., W. A. Brock, S. N. Durlauf and R. Jayaraman (2015) �Linear Social Interac-

tions Models,�Journal of Political Economy, 123, 444�496.

29



17. Carroll, G. (2015) �Robustness and Linear Contracts,� American Economic Review 105,

2015, 536-563

18. Chung, K.-S. and Ely, J. (2001) �E¢ cient and Dominance Solvable Auctions with Interde-

pendent Values,�mimeo, Northwestern.

19. Cremer, J. and R.P. McLean (1985), �Optimal Selling Strategies under Uncertainty for a

Discriminating Monopolist when Demands are Interdependent,�Econometrica, 53, 345�361.

20. Cremer, J. and R.P. McLean (1988), �Full Extraction of the Surplus in Bayesian and Domi-

nant Strategy Auctions,�Econometrica, 56, 1247�1257.

21. Dasgupta, P. and E. Maskin (2000), �E¢ cient Auctions,�Quarterly Journal of Economics,

115, 341�388.

22. Deb, R. and M. M. Pai (2016), �Discrimination via Symmetric Auctions,�American Eco-

nomic Journal: Microeconomics, forthcoming.

23. Dekel, E., D. Fudenberg and S. Morris (2007), �Interim Correlated Rationalizability,�The-

oretical Economics, 2, 15�40.

24. Duggan, J. and J. Roberts (2002), �Implementing the E¢ cient Allocation of Pollution,�

American Economic Review, 92, 1070-1078

25. Fainmesser, I. P. and A. Galeotti (2015) �Pricing Network E¤ects,� Review of Economic

Studies, 1-36.

26. Gershkov, A., J.K. Goeree, A. Kushnir, B. Moldovanu and X. Shi (2013), �On the Equivalence

of Bayesian and Dominant Strategy Implementation,�Econometrica, 81(1), 197-220.

27. Guo, H. and N.C. Yannelis (2016), �Ambiguous and Robust Full Implementation,�mimeo,

Univ. of Iowa.

28. Grossman, S., J. Stiglitz (1980), �On the Impossibility of Informationally E¢ cient Markets,�

American Economic Review, 70, 393�408.

29. Healy, P. J. and L. Mathevet (2012), �Designing Stable Mechanisms for Economic Environ-

ments,�Theoretical Economics, 7.

30. Hellwig, M. F. (1980), �On the Aggregation of Information in Competitive Markets,�Journal

of Economic Theory, 22, 477�498.

31. Jackson, M. O. (1991), �Bayesian Implementation,�Econometrica, 59, 461�477.

32. Jackson, M. O. (1992), �Implementation in Undominated Strategies: A Look at Bounded

Mechanisms,�Review of Economic Studies, 59, 757�75.

33. Jehiel, P., M. Meyer-ter-Vehn and B. Moldovanu (2012), �Locally Robust Implementation

and Its Limits,�Journal of Economic Theory.

34. Jehiel, P., M. Meyer-ter-Vehn, B. Moldovanu and W. R. Zame (2016), �The Limits of ex

post Implementation,�Econometrica.

30



35. Kim, K. and A. Penta (2012) �E¢ cient Auctions and Robust Mechanism Design: A New

Approach,�mimeo, UW-Madison.

36. Kos, N. and M. Messner (2015) �Selling to the Mean,�, mimeo, Bocconi.

37. La¤ont, J.J. and E. Maskin (1980) �A Di¤erential Approach to Dominant Strategy Mecha-

nisms,�Econometrica, 48, 1507�1520.

38. Li, Y. (2016), �Approximation in Mechanism Design with Interdependent Values, �Games

and Economic Behavior, forthcoming.

39. Lopomo, G., L. Rigotti and C. Shannon (2013) �Uncertainy in Mechanism Design,�mimeo.

40. Manelli, A. and D.R. Vincent (2010) �Bayesian and Dominant-Strategy Implementation in

the Independent Private-Values Model�, Econometrica, 78, 1905-1938.

41. Maskin, E. (1999) �Nash Equilibrium and Welfare Optimality.�, Review of Economic Studies,

66, 23-38. (Working Paper version circulated in 1977)

42. Mathevet, L. A. (2010), �Supermodular Mechanism Design, �Theoretical Economics, 5.

43. Mathevet, L. A. and I. Taneva (2013), �Finite Supermodular Design with Interdependent

Valuations,�Games and Economic Behavior, 82, 327-349.

44. McLean, R. and A. Postlewaite (2002), �Informational Size and Incentive Compatibility,�

Econometrica, 70, 2421-2453.

45. McLean, R. and A. Postlewaite (2004), �Informational Size and E¢ cient Auctions,�Review

of Economic Studies, 71, 809-827.

46. Milgrom, P. and R. J. Weber (1982), �A Theory of Auctions and Competitive Bidding,�

Econometrica, 50, 1089-1122.

47. Mookherjee, D. and S. Reichelstein (1992) �Dominant Strategy Implementation of Bayesian

incentive Compatible Allocation Rules,�Journal of Economic Theory, 56, 378�399.

48. Moulin, H. (1984), �Dominance Solvability and Cournot Stability,�Mathematical Social Sci-

ences, 7.

49. Mueller, C. (2015), �Robust Virtual Implementation under Common Strong Belief in Ratio-

nality,�Journal of Economic Theory, 162, 407-450.

50. Myerson, R. B. (1981), �Optimal Auction Design,�Mathematics of Operations Research, 6.

51. Ollár, M. and A. Penta (2016) �Rationalizable Implementation with Belief Restrictions,�

mimeo, UW-Madison.

52. Ollár, M. and A. Penta (2017) �Full Implementation via Transfers with Identical but Un-

known Distributions,�mimeo, UW-Madison.

53. Oury, M. and O. Tercieux (2012), �Continuous Implementation,�Econometrica, 80, 1605-

1637.

31



54. Penta, A. (2011) �Backward Induction Reasoning in Incomplete Information Games,�mimeo,

UW-Madison.

55. Penta, A. (2012), �Higher Order Uncertainty and Information: Static and Dynamic Games,�

Econometrica, 80, 631-660.

56. Penta, A. (2013), �On the Structure of Rationalizability on Arbitrary Spaces of Uncertainty",

Theoretical Economics, 8, 405�430.

57. Penta, A. (2015), �Robust Dynamic Implementation,� Journal of Economic Theory, 160,

280�316.

58. Postlewaite, A. and D. Schmeidler (1986), �Implementation in Di¤erential Information Economies,�

Journal of Economic Theory, 39, 14�33.

59. Roughgarden, T. and I. Talgam-Cohen (2013), �Optimal and Near-Optimal Mechanism De-

sign with Interdependent Values,�EC�13 ACM Conference on Electronic Commerce.

60. Schmeidler, D. (1989), �Subjective Probability and Expected Utility Without Additivity,�

Econometrica, 57, 571�587.

61. Vives, X. (2011) �Strategic Supply Function Competition With Private Information,�Econo-

metrica, 79, 1919�1966.

62. Weinstein, J. L. and M. Yildiz, (2007) �A Structure Theorem for Rationalizability With

Application to Robust Predictions of Re�nements,�Econometrica, 75, 365�400.

63. Weinstein, J. L. and M. Yildiz, (2011) �Sensitivity of Equilibrium Behavior to Higher-order

Beliefs in Nice Games.,�Games and Economic Behavior, 72, 288�300.

64. Weinstein, J. L. and M. Yildiz, (2013) �Robust Predictions in In�nite-horizon Games�An

Unre�nable Folk Theorem,�Review of Economic Studies, 80, 365-394, 2013.

65. Wilson, R. (1979) �Auctions of Shares,�The Quarterly Journal of Economics, 93, 675�689.

66. Wilson, R., (1987) �Game-Theoretic Analysis of Trading Processes,�Advances in Economic

Theory, ed. by Bewley, Cambridge University Press.

67. Wolitzky, A. (2016) �Mechanism Design with Maxmin Agents: Theory and an Application

to Bilateral Trade,�Theoretical Economics.

68. Yamashita, T. (2015) �Implementation in Weakly Undominated Strategies: Optimality of

Second-Price Auction and Posted-Price Mechanism�, Review of Economic Studies, 82, 1223-

1246.

32


