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Abstract. The transition of the advertising market from traditional media to the internet
has induced a proliferation of marketing agencies specialized in bidding in the auctions
that are used to sell ad space on the web. We analyze how collusive bidding can emerge
from bid delegation to a common marketing agency and how this can undermine the
revenues and allocative efficiency of both the generalized second-price auction (GSP, used
by Google, Microsoft Bing, and Yahoo!) and the Vickrey–Clarke–Groves (VCG) mecha-
nism (used by Facebook). We find that despite its well-known susceptibility to collusion,
the VCGmechanism outperforms the GSP auction in terms of both revenues and efficiency.
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1. Introduction
Online advertising is the main source of revenues for
important firms, such as Google, Facebook, Twitter, etc.,
and it represents one of the largest and fastest-growing
industries in the United States: in 2017, for instance, the
value of advertising on search engines alone exceeded $50
billion in the United States with an annual growth of
nearly 10% (PwC 2017). Almost all online ads are sold
through auctions in which bidders compete for the
adjudicationof oneof a givennumberof“slots” available
in various online venues, such as search engine result
pages, social network feeds, and so on. The most
important auction formats in this market are the
generalized second-price (GSP) auction (used, for
instance, by Google, Microsoft Bing, Yahoo!, etc.) and
the Vickrey–Clarke–Groves (VCG) mechanism (used
byFacebookandGoogle for its contextual ads).TheVCGis
a classic and widely studied mechanism: it involves fairly
complex payments that price externalities, but it has the
advantage of being strategy-proof and efficient. In
contrast, the GSP auction—whose study was pioneered
byVarian (2007) and Edelman et al. (2007) (EOS)—has
very simple rules (the k-highest bidder obtains the
k-highest slot at a price-per-click equal to the k + 1( )-
highest bid), but it gives rise to complex strategic in-
teractions. Both auction formats have been studied ex-
tensively. With few exceptions, however, existing models
have largely ignored a major trend in this market: the rise
of intermediaries operating on the bidding platforms.1

At least since 2011, an increasing number of ad-
vertisers are delegating their bidding campaigns to
specialized digitalmarketing agencies (DMAs),many
of which belong to a handful of agency networks
(seven in the United States) that conduct all bidding
activities through centralized agency trading desks
(ATDs). In recent years, these agency networks have
expanded their activities and contributed to a major
increase in the market concentration, reaching global
revenues that compare well even with those of tech
giants, such as Google.2 As a result, with increasing
frequency, the same entity (be it DMAor ATD) bids in
the same auction on behalf of different advertisers.
But this clearly changes the strategic interaction as
these agencies have the opportunity to lower their
payments by coordinating the bids of their clients.
This not only affects advertisers’ optimal bidding
strategies, but it also has the potential to alter the very
functioning of these auction formats.
This paper proposes a theoretical analysis of the

impact of agency bidding on the two main auction
formats. We find that the agency’s equilibrium bids
are akin to implementing a certain form of collusion3

(even if none of its clients explicitly attempt it) and
that, in this situation, the VCG outperforms the GSP
in terms of both revenues and efficiency. This is a
strong result because the VCG is typically considered
to be highly susceptible to collusion (e.g., Ausubel
and Milgrom 2006), but it is especially noteworthy if
one considers the sheer size of transactions currently
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occurring under the GSP. It also suggests a potential
rationale for why Facebook’s recent adoption of the
VCG mechanism was so successful despite the early
surprise it provoked (e.g., Metz 2015) and for why the
last few years have recorded a steady decline in ad
prices.4 The fragility of the GSP auction that we un-
cover suggests that further changes may occur in this
industry, raising important questions from both a
market-design and an antitrust perspective.

A satisfactory model of agency bidding needs to
satisfy at least two desiderata: first, it must allow
collusive and competitive behavior to coexist because
agencies in these auctions typically operate side by
side with independent advertisers;5 second, it needs
to be sufficiently tractable and amenable to direct
comparisons to the existing benchmarks in the liter-
ature. To achieve these goals, we modify EOS and
Varian’s baseline model by introducing a marketing
agency that we model as a player choosing bids for its
clients in order to maximize the total profits. Bidders
that do not belong to the agency are referred to as
“independents” and have the usual objectives. To
overcome the curse of multiplicity in the GSP auction
and ensure a meaningful comparison with the com-
petitive benchmark, we introduce a refinement of
bidders’ best responses that distills the individual-
level underpinnings of EOS equilibrium and assume
that independents place their bids accordingly. This
stratagem enables us to maintain the logic of EOS
refinement for the independents even if their equi-
librium is not defined in the game with collusion.
The marketing agency, in turn, makes a proposal
of a certain profile of bids to its clients. The proposal
is implemented if it is “recursively stable” in the
sense that, anticipating the bidding strategies of
others and taking into account the possible unrav-
eling of the rest of the coalition, no client has an
incentive to abandon the agency and bid as an in-
dependent. Hence, the clients’ outside options are
equilibrium objects themselves and implicitly in-
corporate the restrictions entailed by the underlying
coalition formation game.6

We consider different models of collusive bidding
within this general framework. First, we assume that
the agency is constrained to placing bids that cannot
be distinguished from EOS competitive equilibria by
an external observer (e.g., the auction platform or an
antitrust authority). We show that, under this con-
straint, the GSP auction is efficient and its revenues are
identical to those obtained if the same agency bid in
a VCG auction. We then relax this “undistinguish-
ability constraint” and show that, even in the absence
of allocative distortions, the GSP’s revenues are lower
than those obtained in the VCG mechanism with the
same agency configuration. Furthermore, once the
undistinguishability constraint is lifted, efficiency is

no longer guaranteed by the GSP. Because the VCG
is well known to be highly susceptible to collusion,
finding that it outperforms the GSP in terms of both
revenues and efficiency is remarkably negative for the
GSP auction.
The source of the GSP’s fragility and the complexity

of agency bidding in this context can be understood
thinking about an agency that controls the first,
second, and fourth highest bidders in an auction. The
agency in this case can lower the highest bidder’s
payment by shading the bid of the second without
necessarily affecting either its position or its payment.
Given the rules of the GSP auction, the agency can
benefit from this simple strategy only if two of its
members occupy adjacent positions. But because of
the GSP’s complex equilibrium effects, the agency can
do more than that. For instance, suppose that the
agency shades the bid of its lowest member with
no direct impact on its other clients’ payments. In-
tuitively, if this bid is kept persistently lower, then
the logic of EOS’s refinement suggests that the
third highest bidder, who is an independent, would
eventually lower its bid. But not only would this
lower the second bidder’s payment, it would also
give the agency extra leeway to lower the second
highest bid to the greater benefit of the highest bidder.
Revenues in this case diminish for both the direct
effect (lowering the second highest bid lowers the
highest bidder’s payment) and for the indirect effect
(lowering the fourth highest bid induces a lower bid
for the independent, which, in turn, lowers the second
bidder’s payment). Hence, even a small coalition may
have a large impact on total revenues. Our general
results show that this impact is larger if the agency
includes members that occupy low or adjacent po-
sitions in the ranking of valuations, but it also de-
pends on the rate at which click-through rates vary
from one position to another and on how indepen-
dents’ valuations compare with those of the coalition
members.
We also explore whether these concerns on the GSP

auction may be mitigated by competition between
agencies. Although multiple agencies each with
multiple bidders in the same auction are not the
typical case in the data, the question has theoretical
relevance because the phenomenon may become
more common in the future. If an increase in agency
competition restored the good properties of these
auctions, then the diffusion of marketing agencies
need not lead to major structural changes in this in-
dustry. Our results, however, suggest otherwise: for
certain coalition structures, agency competition as
expected mitigates the revenue losses in both mech-
anisms (while preserving their relative performance),
but for other coalition structures, it has a particularly
perverse impact on bothmechanisms. That is because,
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from the viewpoint of an agency bidding for multiple
clients, these auction mechanisms have a flavor of a
first-price auction: even holding positions constant,
the price paid depends on the agency’s own bids.
With multiple agencies, this feature of agency bid-
ding may lead to nonexistence of pure equilibria,
very much like the case of competitive (nonagency)
bidding in a generalized first price (GFP) auction.
But as seen in the early days of this industry, when
the GFP was adopted, lack of pure equilibria may
generate bidding cycles that eventually lead to a
different form of collusion. In fact, these bidding
cycles are often cited as the primary cause for the
transition, in the early 2000s, from theGFP to the GSP
auction (cf. Edelman and Ostrovsky 2007). Hence,
not only does agency competition not solve the
problems with these auctions; it appears likely to
exacerbate them.

The rest of the paper is organized as follows: Sec-
tion 2 reviews the competitive benchmark. Section 3
introduces the agency model, and Section 4 presents
the main results. Section 5 discusses the related lit-
erature and some extensions; Section 6 concludes.

2. Competitive Bidding in Online
Ad Auctions

Online ad auctions are mechanisms to assign agents
i ∈ I � 1, . . . , n{ } to slots s � 1, . . . ,S, n ≥ S, where, for
simplicity, we assume that n � S + 1 (the extension to
n ≥ S is straightforward). In our case, agents are ad-
vertisers, and slots are positions for ads on aweb page
(e.g., on a social media’s newsfeed for a certain set of
cookies, on a search engine result page for a given
keyword, etc.). Slot s � 1 corresponds to the highest/
best position and so on until s � S, which is the slot in
the lowest/worst position. For each s, we let xs denote
the click-through rate (CTR) of slot s, that is, the
number of clicks that an ad in position s is expected to
receive, and assume that x1 > x2 > · · · > xS > 0. We
also let xt � 0 for all t > S. Finally, we let vi denote the
per-click valuation of advertiser i, and we label ad-
vertisers so that v1 > v2 > · · · > vn. As in Varian (2007)
and EOS, we maintain that valuations and CTRs are
common knowledge. This complete information en-
vironment is the main benchmark for the literature on
the GSP auction.7

2.1. Rules of the Auctions
In both VCG and GSP auctions, advertisers submit
bids bi ∈ R+, and slots are assigned according to their
ranking: first slot to the highest bidder, second slot
to the second highest bidder, and so on. We denote
bid profiles by b � bi( )i�1,...,n and b−i � (bj)j��i. For any
profile b, we let ρ i; b( )denote the rank of i’s bid in b (ties
are broken according to bidders’ labels).8 When b is

clear from the context, we omit it and write simply
ρ i( ). For any t � 1, . . . ,n and b or b−i, we let bt and bt−i
denote the t-highest component of the vectors b and
b−i, respectively. Hence, with this notation, for any
profile b, in either mechanism, bidder i obtains po-
sition ρ i( ) if ρ i( ) ≤ S and no position otherwise. The
resulting payoff, ignoring payments, is thus vixρ i( ).
The GSP and VCG mechanisms only differ in their

payment rule. In the GSP mechanism, the k-highest
bidder gets position k and pays a price per click equal
to the k + 1( )-highest bid. Using our notation, given a
profile of bids b, agent i obtains position ρ i( ) and pays
a price per click equal to bρ i( )+1. Bidder i’s payoff in
the GSP auction, given a bid profile b ∈ Rn+, can thus
be written as u&i b( ) � (vi − bρ i( )+1)xρ i( ).
In the VCG auction, an agent pays the total allo-

cation externality the agent imposes on others. In this
setting, if the advertiser in position k were removed
from the auction, all bidders below that would climb
up one position. Hence, if other bidders are bidding
truthfully (i.e., bj � vj, as is the case in equilibrium),
the total externality of the k-highest bidder is equal
to

∑S+1
t�k+1 b

t(xt−1 − xt). We can thus write i’s payoff in
the VCG mechanism, given a bid profile b ∈ Rn+, as
u9i (b) � vixρ(i) −∑S+1

t�ρ(i)+1 b
t(xt−1 − xt).

In the rest of this section, we review known results
on the competitive benchmarks for these two mech-
anisms. The only original result is Lemma 1, which
provides an alternative characterizationof EOS’s lowest-
revenue envy-free equilibrium of the GSP auction.

2.2. Equilibria
Despite the relative complexity of its payment rule,
bidding behavior in the VCG is very simple because
truthful bidding (i.e., bi � vi) is a dominant strat-
egy in this auction. In the resulting equilibrium, ad-
vertisers are efficiently assigned to positions. The
VCG mechanism, therefore, is efficient and strategy-
proof.
Equilibrium behavior in the GSP auction is much

more complex. To see this, first note that a generic
profile of bids for i’s opponents, b−i � (bj)j��i, partitions
the space of i’s bids into S + 1 intervals of payoff-
equivalent bids for bidder i. So, for each b−i ∈ Rn−1+ , let
πi b−i( ) denote i’s favorite position given b−i.9 Then i’s
best-response correspondence BRi : R

n−1+ �R+ is such
that, for every b−i, BRi b−i( ) � (bπi b−i( )

−i , bπi b−i( )−1
−i ).

The GSP auction has many Nash equilibria (NEs;
fixed points of the ×i∈IBRi). For this reason, EOS in-
troduced a refinement of the equilibrium correspon-
dence, the lowest-revenue locally envy-free equilibrium,
whichwas crucial to cut through the complexity of the
GSP auction.10 As EOS showed, such equilibria in-
duce the same allocations and payments as truthful
bidding in the VCG, and they are fully characterized
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by the following conditions: b1 > b2, bi � vi for all i > S,
and for all i � 2, . . . , S,

bi � vi − xi

xi−1
vi − bi+1( ). (1)

But EOS’s refinement is not defined when agencies
are present.We, thus, consider instead a refinement of
the individual best response correspondences, which
distills the individual-level underpinnings of EOS
refinement. Formally, for any b−i ∈ Rn−1+ , let

BR*
i b−i( ) � b*i ∈ BRi b−i( ) : vi − bπi b−i( )

−i
( )

xπi b−i( )
{
� vi − b*i
( )

xπi b−i( )−1
}
.

(2)

In words, of the many bi ∈ BRi b−i( ) that would grant
player i the player’s favorite position πi b−i( ), the
player chooses the bid b*i that makes the player in-
different between occupying the current position and
climbing up one position paying a price equal to b*i .
The set of fixed points of the ×i∈IBR*

i correspondence,
given valuations v, are denoted as E* v( ).
Lemma 1. For any v � vi( )i�1,...,n, b ∈ E* v( ) if and only if b
is an EOS equilibrium.

This lemma shows that EOS’s equilibrium—origi-
nally defined as a refinement of the Nash equilibrium
correspondence—can be equivalently defined as the
fixed point of a refinement of individual best re-
sponses. Hence, BR*

i provides a model of individual
behavior that is consistent with EOS’s equilibrium
and that is well defined in our setting even if EOS’s
equilibrium is not. The next example is used re-
peatedly throughout this paper to illustrate the rel-
ative performance of the GSP and VCG mechanisms.

Example 1. Consider an auction with four slots and five
bidders with the following valuations: v � (5, 4, 3, 2, 1).
The CTRs for the five positions are the following:
x � (20, 10, 5, 2, 0). In the VCGmechanism, bids are bi �
vi for every i, which induces total expected revenues of
96. Bids in EOS’s lowest-revenue envy-free equilibrium of
the GSP auction instead are as follows: b5 � 1, b4 � 1.6,
b3 � 2.3, and b2 � 3.15. The highest bid b1 > b2 is not
uniquely determined, but it does not affect the reve-
nues, which, in this equilibrium, are exactly the same
as in the VCG mechanism: 96. Clearly, also the allo-
cation is the same in the twomechanisms, and efficient.

3. A Model of Agency Bidding
Our analysis of marketing agencies focuses on their
opportunity to coordinate the bids of different ad-
vertisers. We thus borrow the language of coop-
erative game theory and refer to the clients of the
agency as “members of a coalition” and to the re-
maining bidders as independents. In this section,

we focus on environments with a single agency and
postpone the analysis of the multiple agency case to
Section 4.3.
Modeling coordinated bidding, it may seem nat-

ural to consider standard solution concepts such as
strong Nash (Aumann 1959) or coalition-proof equi-
librium (Bernheim et al. 1997). Unfortunately, these
concepts have no bite in the GSP auction because it
can be shown that EOS’s equilibrium satisfies both
refinements.
We model the marketing agency as a player that

makes proposals of binding agreements to its mem-
bers, subject to certain stability constraints. The in-
dependents then play the game that ensues from
taking the bids of the agency as given. The agency’s
proposals, however, can only be implemented if they
are stable in two senses: (S.1) first, if they are consistent
with the independents’ equilibrium behavior, and
(S.2) second, if no individual member of the coalition
has an incentive to abandon it and bid as an in-
dependent. We also assume that, when considering
such deviations, coalition members are farsighted
in the sense that they anticipate the impact of their
deviation on both the independents and the remain-
ing members of the coalition (Ray and Vohra 1997).
Hence, given a coalition C, the outside option for each
member i ∈ C is the member’s equilibrium payoff in
the game with coalition C\ i{ }, in which i bids as an
independent. The constraint for coalition C thus de-
pends on the solutions to the problems of all the subco-
alitions C′ ⊆ C, and hence, the solution concept for the
game with the agency is defined recursively. We thus
call it the recursively-stable agency equilibrium (RAE).
We also consider a third constraint (R), which we

formalize as a set R C( ) ⊆ A, to accommodate the
possibility that the agency exogenously discards
certain bids. For instance, we consider the case of an
agency whose primary concern is not being identified
as inducing collusion (Section 4.2.1) or to induce ef-
ficient outcomes (Section 4.2.2). In those cases, R C( )
would be comprised, respectively, of only those
profiles that are “undistinguishable” to an external
observer as collusive or efficient.

3.1. The Recursively Stable Agency Equilibrium
Let G � Ai,ui( )i�1,...,n denote the baseline game (with-
out a coalition) generated by the underlying mecha-
nism (e.g., GSP or VCG).We let# denote the collection
of all sets C ⊆ I such that |C| ≥ 2. For any C ∈ #, we let
C denote the agency, and we refer to advertisers i ∈ C
as members of the coalition and to i ∈ I\C as in-
dependents. The coalition chooses a vector of bids
bC � (bj)j∈C ∈ ×j∈CAj. Given bC, the independents i ∈ I\C
simultaneously choose bids bi ∈ Ai. We let b−C :� (bj)j∈I\C
and A−C :� ×j∈I\C Aj. Finally, given profiles b or b−C,
we let b−i,−C :� (bj)j∈I\C:j��i denote the subprofile of bids
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of all independents other than i. We assume that the
agency maximizes the sum of its members’ payoffs,11

denoted by uC b( ) :� ∑
i∈C ui b( ) under the three con-

straints (S.1, S.2, and R) discussed, which we formally
introduce next.

ConcerningR,5 � {R C( )}C∈# denotes thecollectionof
exogenous restrictions for all possible coalitions, and for
each C, RC ⊆ AC denotes the coalition bids consistent
with R C( ):

RC :� bC ∈ AC : ∃b−C ∈ A−C{
s.t. bC, b−C( ) ∈ R C( )}. (3)

Concerning S.1, for any i ∈ I\C, let BR*
i : A−i �Ai

denote some refinement of i’s best response corre-
spondence in the baseline game G (e.g., truthful bid-
ding in the VCG or (2) in the GSP). Define the inde-
pendents’ equilibrium correspondence BR*−C : AC �A−C as

BR*
−C bC( )
� b−C ∈ A−C : ∀j ∈ I\C, bj ∈ BR*

j bC, b−j,−C
( ){ }

. (4)

If the agency proposes a profile bC that is not
consistent with the equilibrium behavior of the in-
dependents (as specified by BR*−C), then that proposal
does not induce a stable agreement. We thus incor-
porate this stability constraint into the agency’s op-
timization and assume that the agency can only
choose bid profiles from the set12

SC � bC ∈ AC : ∃b−C s.t. b−C ∈ BR*
−C bC( ){ }

. (5)
Concerning S.2, the agency forms conjectures about

how its bids bC affect the independents’ bids in the
continuation game. Let β : SC → A−C represent such
conjectures and define the set of conjectures that are con-
sistent with the independents playing an equilibrium:

B* � β ∈ ASC−C :β bC( ) ∈ BR*
−C bC( ) for all bC ∈ SC

{ }
. (6)

The second stability condition requires that, given
conjectures β, no coalition member i ∈ C has an in-
centive to leave and bid as an independent in the
game with coalition C\ i{ }. This constraint, thus, re-
quires a recursive definition. To this end, first let
E* :� {b ∈ Rn+ : bi ∈ BR*

i b−i( ) for all i ∈ I} denote the set
of equilibria in the game without coalition (given
refinement BR*

i ). Then, letting E5 C′( ) denote the set of
RAE outcomes of the game with coalition C′, given
restrictions 5 (and refinement BR*

i ), we initialize the
recursion setting E5 C′( ) � E* if |C′| � 1 (i.e., if an
agency controls only one bidder, then the RAE are
the same as the competitive equilibria). Suppose
next that E5 C′( ) has been defined for all sub-
coalitions C′ ⊂ C. For each i ∈ C, and C′ ⊆ C\ i{ }, let
ūC

′
i � minb∈E5 C′( ) ui b( ). Then, recursively, we have the

following.

Definition 1. A Recursively-stable Agency Equilibirum
(RAE) of the game Gwith coalition C given restrictions
5 � {R C( )}C∈# and refinement BR*

i is a profile of bids
and conjectures (b*, β*) ∈ AC × B* such that13

1. The independents play a best response: for all
i ∈ I\C, b*i ∈ BR*

i (b*−i).
2. The conjectures of the agency are correct and

consistent with the exogenous restrictions: β*(b*C) �
b*−C and (bC, β* bC( )) ∈ R C( ) for all bC ∈ RC.
3. The agency best responds to conjectures β*, sub-

ject to the exogenous restrictions (R) and the stabil-
ity restrictions (S.1) and (S.2):

b*C ∈ argmax
bC

uC bC, β* bC( )( )
s.t. (R) bC ∈ RC

(S.1) bC ∈ SC

(S.2) for all i ∈ C,ui bC, β* bC( )( ) ≥ ūC\ i{ }
i .

The set of (5-constrained) RAE outcomes for the
game with coalition C is

E5 C( ) � b* ∈ A : ∃β* s.t. b*, β*
( )

is a RAE
{ }

. (7)
We refer to the case in which 5 is such that R C( ) � A
for all C ∈ # as the “unconstrained” case and denote
the set of unconstrained RAE outcomes as E C( ).
Before moving to the general results of the next

section, we first illustrate the logic of this definition
in the context of a simple example. In the example
as well as in some results in Section 4, equilibrium
bids are sometimes such that bi � bi+1 for some i.
Because ties are broken according to bidders’ la-
bels (cf. endnote 8), in that case, bidder i obtains the
position above i + 1. To emphasize this, we write
bi � b+i+1.

14

Example 2. Consider an environment with five bidders
who compete for the allocation of four slots sold
through the VCGmechanism. Bidders’ valuations are
v� (40,25,20,10,9), and the CTRs are x� (20,10,9,1,0).
As discussed in Section 2, in this mechanism, ad-
vertisers bid truthfully in the competitive bench-
mark, and hence, equilibrium payoffs for the five
bidders are uComp � 441, 141, 91, 1, 0( ).
Now consider a setting in which bidders 1 and 5

belong to the same agency, C′ � 1, 5{ }, and everyone
else is an independent. Bidding truthfully remains a
dominant strategy for the independents, but clearly,
this is not the case for the agency: because bidder 1’s
payment is strictly decreasing in b5, the optimal so-
lution for the agency is to lower b5 as much as possible
while ensuring that bidder 1 keeps the first position.
Hence, any profile b′ � b′1, 25, 20, 10, 0

( )
such that b′1 >

25 is an (unconstrained) RAE when C′ � 1, 5{ }, and
the resulting payoffs are u′ � 450, 150, 100, 10, 0( ) with
a total of 450 for the coalition. Comparing u′ with uComp,
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it is also clear that no member of the coalition would
rather bid as an independent.

Next, suppose that the coalition also includes bid-
der 2: C′′ � 1, 2, 5{ }. In this case, the (unconstrained)
RAE bids are b′′ � (b′′1 , 20+, 20, 10, 0), where b′′1 > 20,
which induces payoffs u′′ � 500, 150, 100, 10, 0( ) and a
total of 650 for the coalition. To see that this is an RAE,
recall that truthful bidding is still dominant for the
independent bidders. The argument for keeping b′′5 � 0
and b′′1 > 20 are the same as before. As for b2, first,
note that, if the agency set b2 � 10+, pushing bidder 2
down to the third slot, then the coalition payoff would
be 655, which is higher than 650. But, in such a profile,
2’s payoff would be 145, which is lower than u′2 � 150,
the payoff 2 could obtain if 2 bid as an independent
in the game with C′ � 1, 5{ }. Hence, lowering b2 to
the point of obtaining a lower positionwould increase
the overall coalition payoff (by decreasing bidder 1’s
payment) but would violate the stability constraint
(S.2) for bidder 2. Hence, the optimal b′′2 is the lowest
bid that ensures that bidder 2 maintains the second
position.

Note that the recursive definition of the outside
option matters in this example: if outside options
were defined with respect to the competitive case,
bidder 2 would remain in the coalition even when
forced to take the lower position because the payoff
in the competitive benchmark is uComp

2 � 141 < 145.
But we find it unreasonable to model 2’s outside
option this way: why would an agency client as-
sume that, were the client to abandon the agency,
the entire coalition would be disrupted and full
competition restored? The recursivity of the (S.2)
constraint reflects these considerations. Finally, the
example also shows that RAE outcomes in general
are not Nash equilibria of the baseline game, nor of
the game in which the coalition is replaced by a
single player. Similar to Ray and Vohra (1997, 2014)
equilibrium binding agreements (EBAs, which we
discuss in Section 5), the stability restrictions affect the
set of equilibrium outcomes, not merely as a refinement.

4. Agency Bidding in VCG and
GSP: Results

In this section, we specialize the general notion of
RAE to the GSP and VCG mechanisms.

Definition 2 (RAE in the GSP and VCG). Given a set of
exogenous restrictions 5, the 5-constrained RAE of
the GSP and VCG mechanisms are obtained from
Definition 1, letting G denote the corresponding
game and BR*

i be defined, respectively, as in (2) for
the GSP and as the dominant (i.e., truthful) strategy
in the VCG.

We first present the analysis of the VCGmechanism
(Section 4.1) and then proceed to the GSP auction

(Section 4.2). Our main conclusion is that the VCG
outperforms the GSP in terms of both revenues and
allocative efficiency, thereby uncovering a striking
fragility of the GSP with respect to agency bidding.

4.1. Agency Bidding in the VCG Mechanism
Our first result characterizes the unconstrained RAE
of the VCG mechanism: it shows that they are unique
up to the bid of the highest coalition member and
that, in all such equilibria, advertisers are assigned to
positions efficiently, independents’ bids are equal to
their valuations and all the coalition members (except
possibly the highest) bid the lowest possible value
that ensures their efficient position. Formally, we
have the following.

Theorem 1 (RAE in the VCG). For any C, let E C( ) denote
the unconstrained RAE of the VCG. Then b̂ ∈ E C( ) if and
only if

b̂i

� vi, if i ∈ I\C,
� b̂+i+1, if i ∈ C\ min C( ){ } and i ≤ S,

∈ b̂+i+1, vi−1
( )

, if i � min C( ) and i ≤ S,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩ (8)

where we denote v0 :�∞ and b̂n+1 :� 0.

The unconstrained RAE of the VCG mechanism,
therefore, are efficient with generally lower reve-
nues than in the VCG’s competitive benchmark. The
efficiency result is due to the stability restrictions in
RAE, which limits the agency’s freedom to place
bids. Restriction (S.2), in particular, requires that the
agency’s proposal gives nomember of the coalition an
incentive to abandon it and bid as an independent.
Similar to the illustrative Example 2, a recursive ar-
gument further shows that the payoff that any co-
alition member can attain from abandoning the co-
alition is bounded below by the equilibrium payoffs
in the baseline (coalition-less) game, in which as-
signments are efficient. The “Pigouvian” logic of the
VCG payments, in turn, implies that such (recursive)
participation constraints can only be satisfied by
the efficient assignment of positions. As shown by
Example 2, the recursive stability restriction (S.2) is
key to this efficiency result.
Whereas the presence of an agency does not alter

the allocation of the VCGmechanism, it does affect its
revenues: in any RAE of the VCG mechanism, the
agency lowers the bids of its members (except pos-
sibly the one with the highest valuation) as much as
possible within the constraints posed by the efficient
ranking of bids. Because, in the VCG mechanism,
lowering the ith bid affects the price paid for all slots
s � 1, . . . ,min S + 1, i − 1{ }, even a small coalition can
have a significant impact on the total revenues. On the
other hand, the VCG’s strategy-proofness ensures
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that the agency has no impact on the independents,
which continue to use their dominant strategy and bid
truthfully.15 Hence, although an agency may have a
large “direct effect” on revenues, it has no “indirect
effect” in this mechanism.

Example 3. Consider the environment in Example 1
and suppose that C � 1, 3{ }. Then, applying the for-
mula in (8), the RAE of the VCG mechanism is b̂ �
(b̂1, 4, 2+, 2, 1). The resulting revenues are 86 as op-
posed to 96 of the competitive benchmark.

4.2. Agency Bidding in the GSP Auction
We begin our analysis of the GSP auction by char-
acterizing the RAE when the agency is constrained
to placing bids which, to an external observer, are
undistinguishable from a (competitive) EOS equi-
librium: the “undistinguishable (from EOS) coordi-
nation” (UC) restriction. Theorem 2 shows that the
equilibrium outcomes of the GSP with this restriction
are exactly the same as the unrestricted RAE of the
VCG mechanism. We lift the UC restriction in Sec-
tion 4.2.2 and show that the GSP’s RAE may be in-
efficient and induce strictly lower revenues than their
VCG counterparts. Moreover, the revenue ranking
holds even if the agency is restrained from inducing
allocative distortions (Theorem 3).

4.2.1. UndistinguishableCoordination:AVCG-Equivalence
Result. Consider the following set of exogenous re-
strictions: for any C ∈ #,

RUC(C) :�
{
∈ A : ∃v′C ∈ R|C|

+ s.t. b ∈ E* v′C, v−C
( )}

. (9)

In words, RUC(C) is comprised of all bid profiles that
could be observed as part of an EOS equilibrium in the
GSP auction given the valuations of the independents
v−C � (vj)j∈I\C. For instance, consider an external ob-
server (e.g., the search engine or the antitrust au-
thority) who can only observe the bid profile but not
the valuations vi( )i∈C. Then RUC(C) characterizes the
bid profiles that ensure the agency’s bidding strategy
could not be distinguished from an EOS equilibrium
(and, hence, detected as “collusive”) even if the in-
dependents had revealed their own valuations to the
external observer.16

The next result characterizes the RAE of the GSP
under these restrictions and shows its revenue and
allocative equivalence to the unrestricted RAE of
the VCG.

Theorem 2. For any C, let v f
n+1 � 0, and for each i � n, . . . , 1,

let v f
i :� v f

i+1 if i ∈ C and v f
i � vi if i /∈C. Then, in any RAE

of the GSP auction under the undistinguishable coordination
(UC) restriction, the bid profiles b̂ are such that, for every i,

b̂i
� v f

i − xi
xi−1 v f

i − b̂i+1
( )

, if i �� 1 and i �� min C( ),
∈ v f

i − xi
xi−1 v f

i − b̂i+1
( )

, b̂i−1
[ )

, otherwise,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(10)

where b̂0 :�∞ and xi/xi−1 :� 0 whenever i > S. Moreover,
in each of these equilibria, advertisers are assigned to
positions efficiently, and advertisers’ payments are the
same as in the corresponding unrestricted RAE of the
VCG mechanism (Theorem 1).

Hence, the UC-RAE of the GSP are unique up to the
highest bid of the coalition and up to the highest
overall bid, and they are equivalent to the (compet-
itive) EOS equilibria for some profile (v f

i )i∈I of feigned
valuations (which satisfy v f

i � vi for all i /∈C). Though
notationally involved, the idea is simple and provides
clear insights into the agency’s equilibrium behavior:
intuitively, in order to satisfy the UC restriction,
the agency’s bids for each of its members should
mimic the behavior of an independent advertiser in
the competitive benchmark for some valuation. The
agency’s problem, therefore, boils down to “choos-
ing” a feigned valuation for each of its members and
bidding accordingly. The optimal choice of the
feigned valuation is the one which, given others’ bids
and the bidding strategy of an independent, induces
the lowest bid consistent with i obtaining the ith
position in the competitive equilibrium of the model
with feigned valuations, which is achieved by
v f
i � vfi+1. Note that the fact that bidder i cannot be

forced to a lower position is not implicit in the UC re-
striction but the result of the equilibrium restrictions.17

The resulting allocation is efficient, and it yields the
same individual payments (and, hence, total reve-
nues) as the unrestricted RAE of the VCG mechanism.
To understand the implications of this equilibrium,

note that, in the GSP auction, the ith bid only affects
the payment of the i − 1( )th bidder. Hence, the direct
effect of bid manipulation is weaker in the GSP than
in the VCG mechanism, in which the payments for
all positions above i are affected. Unlike the VCG
mechanism, however, manipulating the bid of co-
alition member i also has an indirect effect on the bids
of all the independents placed above i, who lower
their bids according to the recursion in (10).

Example 4. Consider the environment of Example 3
with C � 1, 3{ }. Then, applying the formula in (10),
the UC-RAE is b̂ � (b̂1, 2.9, 1.8, 1.6, 1), which results
in revenues 86. These are the same as in the VCG
mechanism (Example 3) and 10 less than in the non-
agency case (Example 1). Note that the bid b̂3 � 1.8
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obtains setting vf3 � v4 � 2 and then applying the same
recursion as for the independents. Also note that the
direct effect, because of the reduction in b̂3, is only equal
to (bEOS

3 − b̂3) · x2 � 5 (where bEOS
3 denotes 3’s bid in the

nonagency benchmark). Thus, 50% of the revenue loss
in this example is due to the agency’s indirect effect on
the independents.

Thus, despite the simplicity of the payment rule
in the GSP auction, the equilibrium effects in (10)
essentially replicate the complexity of the VCG pay-
ments: once the direct and indirect effects are combined,
the resulting revenue loss is the same in the two mech-
anisms. This result also enables us to simplify the analysis
of the impact of agency bidding on the GSP by studying
the comparative statics of the unconstrained RAE in the
VCG mechanism. We can thus obtain some qualitative
insights for this complex problem.

Corollary 1. Hold the agency configuration C constant.
Then, in both the unconstrained RAE of the VCG and in the
UC-RAE of the GSP auction, the revenue losses resulting
from agency bidding are larger if (i) the differences xi−1 −(
xi) associated with the agency’s clients i ∈ C are larger or if
(ii) the difference in valuations between the agency’s clients
and the independents immediately below them in the rank-
ing of valuations are larger.

To understand this corollary, recall that the price
per click for position s in the VCG given a profile b is
equal to

∑S+1
t�s+1 bt(xt−1 − xt). By Theorem 1, in the RAE

of the VCG, the agency lowers the bids of its members
as much as possible while preserving the efficient
ranking of bids. Hence, holding C and vi( )i∈I constant,
it is clear that the revenue losses from agency bidd-
ing are larger if the terms (xt−1 − xt) associated with
agency members are larger, which is part (i) of the
corollary. To understand part (ii), let i be an agency
member such that i + 1 is an independent. Because
independents bid truthfully in the VCG, we have
bi+1 � vi+1, and hence, the efficient ranking can be
maintained only if bi ≥ vi+1. Hence, the lower vi+1, the
stronger is the impact of agency bidding.

The next comparative statics refer to the agency com-
position. Besides the obvious statement that an agency’s
impact is stronger if it includes more bidders, the
impact of different coalitions in general depends on
the exact CTRs and valuations. To isolate the position
effects from the comparative statics in Corollary 1,
which were driven by the differences xs − xs+1( ) and
vs − vs+1( ), we assume that they are constant in s.

Corollary 2. Assume that Δs x( ) :� xs − xs+1( ) and Δs v( ) :�
vs − vs+1( ) are constant in s. Then, in both the RAE of the
VCG and in the UC-RAE of the GSP, the revenue losses

resulting from agency bidding are larger if the agency includes
members that occupy adjacent or lower positions in the ranking
of valuations.

To understand this result, note that if an agency
has no two “adjacent” members, then i + 1 is an in-
dependent for all i ∈ C, and hence, for the preceding
explanation, the lower bound to i’s bid equals vi+1.
But, if instead i + 1 also belongs to the agency, then the
lower bound drops to the valuation of the next lower
independent. The rest of the corollary follows directly
from the fact that a given reduction of a bid in theVCG
has a larger impact if it’s lower in the ranking because
it affects the payments for all positions above. The
latter point is particularly interesting because one
might have expected that the agency would have a
larger impact if it controlled the high-valuation bid-
ders. We find that, in fact, the opposite is true when
one controls for the increments Δs x( ) and Δs v( ).

4.2.2. Lifting the UC Restriction: Revenue Losses and
Inefficiency. As discussed in Section 4.1, even a small
coalition of bidders may have a large impact on
revenues in the VCG. Theorem 2 therefore already
entails a fairly negative outlook on the GSP’s reve-
nues when an agency is active even if it cannot be
detected as collusive because it is undistinguishable
from an EOS equilibirum. The next example shows
that, when the undistinguishability constraint is lif-
ted, an agency may induce larger revenue losses as
well as inefficient allocations in the GSP auction.

Example 5. Consider an environment with eight
bidders and seven slots with valuations v � (12, 10.5,
10.4, 10.3, 10.2, 10.1, 10, 1) and CTRs x � (50, 40, 30.1,
20, 10, 2, 1, 0). Let the coalition be C � {5, 6}. The un-
restricted RAE is essentially unique (up to the highest
overall bid) and inefficient with the coalition bidders
obtaining slots 4 and 6. Equilibrium bids (rounding
off to the second decimal) are b � (b1, 9.91, 9.76, 9.12,
9.5, 7.94, 5.5, 1). Note that b4 � 9.12 < 9.5 � b5, which
induces an inefficient allocation. The inefficiency arises
as follows. Suppose that the agency drastically lowers b6
to benefit the other member. If b6 is very low, it creates
incentives for the independents i < 5 to move down to
the position just above bidder 6 in order to appropriate
some of the rents generated by its lower bid. Hence, if
efficiency were to be preserved, bidder 5’s bid would
also have to be reduced to make the higher positions
more attractive. But the reduction of bidder 6’s bid in
this example is large enough that bidder 4’s undercut is
sufficiently low that the coalition prefers to give up
position 5. Thus, the coalition does not benefit directly
from the reduction of bidder 6’s bid, but indirectly, by
attracting bidder 4 to the lower position.
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Hence, unlike the VCG mechanism, the unre-
stricted RAE of the GSP auction can be inefficient.
In light of this result, it may appear that the un-
constrained RAE in the GSP allows an implausible
degree of freedom to the agency and that this alone is
the cause of the low revenues of the GSP auction. To
see whether this is the case, we consider next exog-
enous restrictions that force the agency to induce
efficient allocations. Theorem 3 shows that, even with
this restriction, the GSP’s revenues are no higher than
in the unrestricted RAE of the VCG mechanism.
Formally, let 5EFF � {REFF(C)}C∈# be such that, for
each nontrivial coalition C ∈ #,

REFF(C) :� b ∈ A : ρ(i; b) � i ∀i ∈ I
{ }

.

Definition 3. An efficiency-constrained RAE of the GSP
auction is an RAE of the GSP auction in which the
exogenous restrictions are given by 5 � 5EFF.

Theorem 3. Efficiency-constrained RAE of the GSP auc-
tion exist; in any such RAE, (i) the agency’s payoff is at least
as high as in any RAE of the VCG mechanism, and (ii) the
auctioneer’s revenue is no higher than in the corresponding
equilibrium of the VCG auction. Furthermore, there exist
parameter values under which both orderings are strict.

By imposing efficiency as an exogenous constraint,
Theorem 3 shows that the fragility of the GSP’s rev-
enues is independent of the allocative distortions it
may generate. The intuition behind Theorem 3 is
simple in hindsight: in the VCG mechanism, truthful
bidding is dominant for the independents, and hence,
the agency’s manipulation of its members’ bids only
has a direct effect on revenues. In the GSP auction, in
contrast, the agency has both a direct and an indirect
effect. Under the UC restrictions, the two effects
combined induce just the same revenue loss as in the
VCG mechanism, but lifting that restriction tilts the
balance to the disadvantage of the GSP.18

Example 6. Consider the environment of Examples 3
and 4 with C � 1, 3{ }. The efficiency-constrained RAE

is b̂ � (b̂1, 2.8, 1.6+, 1.6, 1), which results in revenues 82,
which are lower than the RAE in the VCG mecha-
nism (86). Note that, relative to the UC-RAE in Ex-
ample 4, the coalition lowers b3 to the lowest level
consistent with the efficient ranking. This, in turn,
induces independent bidder 2 to lower his or her bids;
hence, the extra revenue loss is due to further direct and
indirect effects. We note that the efficiency restriction is
not binding in this example, and hence, the Eff-RAE
and the unconstrained RAE coincide. (Table 1 sum-
marizes and compares the equilibria illustrated in our
running examples.)

Summing up, because—under the efficiency
restriction—the GSP auction induces the same allo-
cation as the VCG mechanism, the two mechanisms
are ranked in terms of revenues purely because of the
agency’s effect on prices. Obviously, if allocative
inefficiencies were introduced, they might provide a
further, independent source of revenue reduction. As
already noted, this is not the case in Example 6, in
which the efficiency constraint is not binding, but it is
possible in general (see Example 5).
The unrestricted RAE of the GSP are difficult to

characterize and (as shown with Example 5) allow
perhaps too much freedom to the agency.19 The extra
restrictions enabled by the Eff-RAE or UC-RAE thus
may prove to be more fruitful from an applied per-
spective because they represent outcomes that are
computationally easier to attain for an agency.

4.3. Agency Competition
Multiple agencies competing in the same auction
appears rarely in the data (Decarolis et al. 2018), but
for the reasons explained in the Introduction, it is
nevertheless interesting to assess whether competi-
tion may soften the impact of agency bidding on
online ad auctions. This is a reasonable conjecture, but
the results we present in this section suggest a more
nuanced view on this point. In particular, for certain
coalition structures, our earlier results extend to the
case with multiple agencies essentially unchanged:

Table 1. Summary of Results in Examples

Valuations VCG GSP (EOS) RAE in VCG UC-RAE in GSP (Eff.) RAE in GSP

5 5 b1 b1 b1 b1

4 4 3.15 4 2.9 2.8
3 3 2.3 2+ 1.8+ 1.6+

2 2 1.6 2 1.6 1.6
1 1 1 1 1 1
Revenues 96 96 86 86 82

Notes. Summary of results in Examples 1, 3, 4, and 6. Coalitionmembers’ bids and valuations are in bold.
The VCG and GSP columns represent the competitive equilibria in the two mechanisms as described in
Example 1. The RAE in VCG and the revenue equivalent UC-RAE in the GSP are from Examples 3 and 4,
respectively. The last column denotes both the efficient RAE and the unrestricted RAE of the GSP
auction, which coincide in Example 6.
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the revenue losses are less pronouncedwhen the same
set of coordinating bidders is divided into two (or
more) competing coalitions, but they would still be
substantial and preserve the relative performance of
the VCG and GSP auctions. But, for other coalition
structures, equilibria in pure strategies do not exist,
and hence, bidding cycles are likely to emerge.20

Hence, although competition between agencies may
indeedmitigate the agencies’ effects on the platforms’
revenues, it may also impair the working of the
current mechanisms in a more fundamental way.

For simplicity,we consider the casewith two agencies
(the extension to more than two agencies is cumber-
somebut straightforward).Wealso assume that agencies
break indifferences over bids in the same way that in-
dependents do. This implies that the highest bidder in
any coalition bids as if the bidder were an independent.
With the formal definitions given in Section A.3 of the
appendix, the following result holds.

Theorem 4. (i) If no members of different coalitions occupy
adjacent positions in the ordering of valuations, then the UC-
RAE of the GSP with multiple coalitions is unique. In this
equilibrium, the allocation is efficient, and the search engine
revenues are weakly higher than those of the UC-RAE in
which all members of the different coalitions bid under the
same agency but lower than under full competition. More-
over, both the allocation and the associated revenues are
identical to those resulting in the unconstrained RAE of the
VCG mechanism with the same agency configuration. (ii) If
nontop members of different coalitions occupy adjacent
positions in the raking of valuations, no unconstrained RAE
of the VCG and no UC-RAE of the GSP exist.

The first part of the theorem extends Theorems 1
and 2 to the case of multiple agencies. The result,
therefore, shows that competition between agencies
maymitigate but not solve the revenue losses because
of coordinated bidding. If coalitions have bidders in
adjacent positions (part (ii) of the theorem), further
problems arise, such as nonexistence of pure-strategy
equilibria and bidding cycles.We illustrate both these
points in the context of our workhorse example.

Example 7. Consider the environment of the examples
in Table 1. Table 2 reports EOS’s equilibrium bids
(second column) as well as the bids under different

coalition structures. We first look at the case of a single
coalition C � {1, 2, 4, 5}. According to our earlier re-
sults, in the UC-RAE with this agency configuration,
the bottom two bidders bid zero. This has an indirect
effect on the independent bidder (3), who lowers his or
her bid from 2.3 to 1.5, thereby lowering the payments
and bids for bidders 1 and 2. If we split this coalition
into two separate coalitions, however, things change
depending on the way we do it. If we split C as in the
fourth column of the table, C1 � {1, 2} and C2 � {4, 5},
we obtain two coalitions with no adjacent members as
in part (i) of Theorem 4. With this coalition structure,
equilibrium revenues amount to 88, which is above the
single coalition case (60) but still well below the com-
petitive benchmark (96).21 If we split C as in the last
column of Table 2, C1 � {1, 4} and C2 � {2, 5}, pure
equilibria would cease to exist. To see this, note that C2
would ideally like to set b5 � 0, and given this, C1
would ideally like to set b4 � 0+. This, however, is
incompatiblewith an equilibrium because once b4 � 0+,
C2 would find it profitable to increase b5 so as to obtain
a higher position with a negligible increase in its
payments. On the other hand, if b4 is set so high that C2
does not find this deviation profitable, then C2’s op-
timal response is to set b5 � 0. But then a strictly
positive b4 cannot be optimal for C1. Hence, a pure
equilibrium does not exist.

Part (ii) of Theorem 4 shows that this phenomenon
emerges whenever two coalitions have nontop mem-
bers that occupy contiguous positions in the ordering
of valuations. It is interesting to note that the behav-
ior behind this phenomenon is nearly identical to that
explained by Edelman and Ostrovsky (2007) in their
characterization of the original GFP auction, under
which the market started, to explain the bidding
cycles observed in the data. As discussed earlier, such
bidding cycles are considered to be the main cause for
the shift from the GFP to the GSP auction. The fact that
a similar phenomenon emerges here with multiple
agencies may thus be seen as a troubling result for the
existing mechanisms, in that it suggests that agency
competition, instead of mitigating the impact of agency
bidding, could exacerbate the system’s instability.
From an empirical perspective, these results suggest

further directions of research because they imply that

Table 2. Competition Between Agencies

Valuations GSP (EOS) Single coalition: C � {1, 2, 4, 5} Two coalitions: C1 � {1, 2}, C2 � {4, 5} Two coalitions: C1 � {1, 4}, C2 � {2, 5}
5 b1 5 5 b1

4 3.15 2.75 3.05 b2

3 2.3 1.5 2.1 b3
2 1.6 0+ 1.2 b4

1 1 0 0 b5

Revenues 96 60 88 —

Note. Bids by coalition members are in bold.
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bidding cycles are more likely to be observed as agency
competition spreads in this market and especially so for
certain configurations of agency membership.

5. Discussion: Related Literature
and Extensions

5.1. RAE and EBA
Our notion of RAE is closely related to the EBAs of
Ray and Vohra (1997, RV hereafter). Given a certain
coalition structure, RV postulate that binding agree-
ments are possible within a coalition. The objective is
to endogenize the collection of agreements such that
no subcoalition has an incentive to break the agreement
and separate from the original coalition. Moreover,
when considering such deviations, the subcoalition is
farsighted in the sense that it does not take the behavior
of the other coalitions as given, nor does it assume that
the remaining members of the coalition will band to-
gether. Instead, it tries to predict the coalition structure
and the agreements that would ultimately arise as a
result of its deviation. In equilibrium, such predictions
are required to be correct. Because of the farsightedness
assumption, RV’s equilibrium is defined recursively,
as is our RAE.22

RV’s and our approaches share the same funda-
mental philosophy. Like RV, we also maintain that
binding agreements are only possible within the co-
alition, but the interaction between the agency and the
independents as well as among the independents is
fully noncooperative. As in RV, the agency in our
model is a proposer of a binding agreement, subject
to certain stability constraints, which crucially in-
corporate RV’s farsightedness assumption. Relative
to RV, our approach differs mainly in that our sta-
bility restriction (S.2) only allows agency proposals to
be blocked by individualmembers, whereas RV allow
for any joint deviation of coalition members. That
advertisers can make binding agreements outside the
agency and jointly block its proposals seems unrealistic
in this context. Hence, a direct application of their
concept to this setting seems inappropriate. Also,
unlike RV (in which the noncooperative interaction is
based on Nash equilibrium), our definition also allows
for refinements. As already explained, this is crucial
here, especially for the analysis of GSP auction.

5.2. Bidding Rings and Partial Cartels
The literature on bidding rings in auctions (e.g.,
Graham and Marshall 1987, Mailath and Zemsky
1991, McAfee and McMillan 1992, Hendricks et al.
2008) also addresses related phenomena but from a
very different perspective. In particular, the main
focus of this literature is on whether members of the
coalition may be incentivized to share their private
information so as to implement collusion, a moot

point under EOS’s complete information assumption.
Maintaining EOS and Varian’s complete information
setting, we implicitly abstract away the information-
extraction problemwithin the coalition. Furthermore,
we don’t allow transfers between members of the
coalition.23 Other mechanisms for collusion have
been considered, for instance, by Harrington and
Skrzypacz (2007, 2011). More importantly, a key
feature of our setting is the copresence of coordinated
and independent bidding. Combining cooperative
and noncooperative interaction is a well-known
challenge in this literature, which either considered
mechanisms in which noncooperative behavior is
straightforward (e.g., second price auctions with pri-
vate values as in Mailath and Zemsky (1991)) or has
assumed that the coalition includes all bidders (as in
thefirst price auctions ofMcAfee andMcMillan (1992)
and Hendricks et al. (2008) or in the dynamic auctions
of Ortner and Chassang (2018) in a different setting).
The notion of RAE enables us to combine cooperative
and noncooperative interaction in general mecha-
nisms even if noncooperative behavior is complex.
The results perhaps suggest that the general concept
of RAE (or other concepts based on RV’s approach)
may provide a valuable methodological contribution
from a broader theoretical perspective to overcome
some of the difficulties involved with modeling par-
tial cartels in auctions.

5.3. Alternative Competitive Benchmarks
The prior literature has shown that, without using the
spitemove refinement concept of EOS, equilibria in
the GSP auction can be worse in terms of both revenue
and efficiency than in the VCG auction. Varian (2007)
presents the EOS equilibrium as a lower bound of a
class of NEs that he refers to as “symmetric”NEs. He
shows that the lower bound on revenues among all
NEs is generally less than the revenue bound for the
symmetric NEs (i.e., the EOS revenues). Borgers et al.
(2013) go a step further and show that inefficient NEs
typically exist. Given these negative results on the
GSP outside the EOS equilibrium, one might wonder
whether the poor performance of the GSP auction is
due to collusive agency bidding or simply because the
equilibrium concept changed somewhat and the spite
refinement has no bite anymore.
The response to this concern is that collusive agency

bidding is the main driver of the poor performance of
the GSP. First, the behaviors associated with the RAE
equilibrium in the GSP typically lead to coalition
bids that are below what could be sustained in the
revenue-minimizing equilibrium of the correspond-
ing competitive game. This is immediately clear when
considering, for instance, the situation of coalition
bidders occupying adjacent positions: their bids are
typically so low that the lowest among these coalition
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members, if it were to act as an independent, would
find it individually profitable to raise its bid and jump
to a higher position. The associated revenue loss,
therefore, is directly a result of agency bidding and
not merely to the possibility of low revenues among
the Nash equilibria other than EOS’s particular re-
finement. Second, as we showed in Lemma 1, our
notion of RAE maintains the same individual-level
underpinning of EOS refinement and, in particular,
the features of EOS concepts that make the GSP work
well. The EOS allocation and payments are embedded
in our model as the end point of the recursion that
defines the outside options of the coalition members.
From this viewpoint, the fact that the VCGoutperforms
the GSP under the same conditions that—absent
agency coordination—make the GSP perform better
than it would if other refinements were considered,
strengthens the result on the GSP’s fragility. Obvi-
ously, our characterizations do exploit the specific
properties of our EOS-based refinement. Results
based on alternative competitive benchmarks would
require altogether different proofs.24 This, we think,
would be an interesting enterprise for future research
but seems beyond the scope of the present paper.
Nonetheless, as we explain in Section 3, the general
notion of RAE lends itself to this kind of exercise
because it provides a tool to study the effect of agency
bidding using different baseline refinements as plug-
in (see also endnote 16).

5.4. Endogenous Participation and
Alternative Approaches

An obvious extension to our approach would be to
model bidders’ choice to join the agency explicitly.
This would also be useful from an empirical view-
point as it would generate extra restrictions to further
identify bidders’ valuations. Once again, however,
the structure of the GSP auction raises nontrivial
challenges. First, it is easy to see that, without an
exogenous cost of joining the agency, the only out-
come of a standard coalition formation game would
result in a single agency consisting of the grand co-
alition of players. Thus, the “obvious” extension of
themodel would not be capable of explaining the lack
of grand coalitions in the data. At a minimum, some
cost of joining the coalition should be introduced.
Clearly, there are many possible ways in which
participation costs could be modeled (e.g., costs as-
sociated to information leakage, management prac-
tices, agency contracts, etc.). But given the still incom-
plete understanding of digital marketing agencies, it
is not obvious which should be preferable.25 More
empirical work is needed on this subject.

Independent of these modeling choices, however, the
cost of joining the agency would ultimately have to be
traded off against the benefit, which, in turn, presumes

solving for the equilibrium for a given coalition struc-
ture. Our work can, thus, be seen as a necessary first
step in developing a full-blown model of agency for-
mation. Exploring different specifications of such costs
and empirically assessing their relative merits is, thus, an
important direction for future research in this area.
Our formulation of the agency problem is also re-

lated to the literature on mediators in games, in-
troduced by Monderer and Tennenholtz (2009) for
complete information and extended by Ashlagi et al.
(2009) to incomplete information with an application
to position auctions. Within this context, the issue of
participation has been discussed, for instance, by
Kalai (2010) and Roth and Shorrer (2018). Finally, a
different approach to agency bidding in the GSP
auction is offered in Lorenzon (2018), which considers
a complete information setting in which the agency
consists in the grand coalition of bidders.

5.5. Quality Scores
In the variant of the GSP auction run by Google or
Microsoft Bing (but not, for instance, by Taobao),
“quality scores” concur in determining the assign-
ment of advertisers to slots and prices: advertisers are
ranked by the product of their bid and quality score
and pay a price equal to the minimum bid consistent
with keeping that position.26 EOS and Varian (2007)
showed how to extend their equilibrium character-
ization when quality scores are introduced and as-
suming that they are common knowledge.27 Quality
scores could be introduced in our model of collusive
bidding in a way similar to EOS’s and Varian’s (2007),
delivering analogous characterizations of the pre-
ceding results. Such an extension is pursued in
Decarolis et al. 2018, who develop a criterion to detect
various forms of collusion based on the variables that
are typically contained in the data sets available to the
auction platforms.

6. Conclusions
This is the first study, to our knowledge, to focus on
the impact of coordinated bidding through inter-
mediaries in search auctions. It, therefore, contributes
to the growing need of understanding both how firms
operate on the platforms on which online ad space is
sold and how these platforms should be designed.
Our results uncover a striking fragility of the GSP auc-
tion to bid coordination.28 Aside from its theoretical
interest, this is a first-order finding because most of
the online marketing is still passing through GSP
auctions. Our findings may also provide a rationale
for why Facebook has recently adopted the VCG and
Google is said to be considering the transition. Shifts
between one mechanism and the other are impor-
tant both for the large stakes involved and because
the proper functioning of this market is essential for
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both advertisers to reach consumers and for consumers
to learn about products.

From a methodological perspective, we note that
the notion of RAE has been key to obtain clear results
in the complex GSP auction and more broadly to ac-
commodate the coexistence of competitive and co-
ordinated bidding. This suggests that our approach,
which combines cooperative and noncooperative ideas,
may be fruitful to address the important problem of
partial cartels, an outstanding challenge in the literature.

Our results are also interesting from a market de-
sign perspective. Although beyond the scope of this
paper, our analysis suggests some possible guidelines
for research in this area. For instance, our analysis of
the GSP auction with undistinguishable coordination
constraints implicitly suggests a way of deriving res-
ervation prices to limit the impact of bid coordination.
This kind of intervention would, thus, reinforce the
resilience of the GSP auction without necessarily en-
tailing major changes in the mechanism. The design
of auction formats more robust to collusion is a chal-
lenging task, and the new formats that might emerge
could have profound implications on the profitability
of one of today’s most important industries.

Finally, our results have implications for compe-
tition policy. For competition authorities, ad auctions
might be worth investigations for potential violations
of the antitrust laws, especially in those jurisdictions
in which price coordination is a violation per se re-
gardless of any welfare implication. In fact, the
multiple activities that DMAs undertake beyond bid
coordination make a priori ambiguous their overall
effects on consumers’ welfare. Furthermore, an ad-
ditional complication is that, in the context of the ad
auctions, bid coordination by a DMA simply requires
it to use bid algorithms that optimize joint profits of its
clients without the need of any explicit communica-
tion. This poses a challenge for those authorities
operating under jurisdictions that only sanction ex-
plicit (as opposed to tacit) collusion. In this respect,
our analysis offers a clear application of the novel
problems that algorithmic pricing poses for the en-
forcement of competition policy.
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Appendix.
A.1. Technical Details
As discussed in Section 2, any generic profile b−i � (bj)j ��i in
theGSP auction partitions the space of i’s bids,R+, into S + 1
intervals: [0, bS−i), [bS−i, bS−1−i ), . . ., [b1−i,∞). Letting b0−i ≡ ∞ and
bS+1−i ≡ 0, if bidder i bids bi ∈ (bt−i, bt−1−i ), then bidder i obtains
slot t � 1, . . . , S + 1 at per-click price bt. If bi is placed at one
extreme of such intervals, the allocation is determined by
the tie-breaking rule embedded in the function ρ. The
function πi introduced in Section 2 can be seen as a cor-
respondence πi : R

n−1+ →→ 1, . . . ,S + 1{ } such that, for each
b−i ∈ Rn−1+ , πi b−i( ) � argmax t�1,...,S+1(vi − bt−i)xt.29 To allow
for the possibility of ties in the bid profiles, it is necessary to
generalize some of these concepts. In particular, if some of
i’s opponents place equal bids (i.e., b−i � (bj)j ��i is such that
bj � bk for some j �� k), then, depending on the tie-breaking
rule embedded in ρ, some of the S + 1 positions may be
precluded to player i (e.g., if i � 1 and b2 � b3, if the tie-
breaking rule is specified as in endnote 8, position s � 2 is
precluded to player i). In that case, the argmax in the
definition of πi should be taken over the set of positions that
are actually accessible to i. Formally, for any b−i ∈ Rn−1+ , let

6 b−i( ) � {s � 1, . . . , S + 1 : ∃bi s.t. ρ i; bi, b−i( ) � s}.
Then we redefine the function πi : R

n−1+ → 1, . . . , S + 1{ } as
follows: for every b−i ∈ Rn−1+ ,

πi b−i( ) ∈ argmax
s∈6 b−i( )

vi − bti
( )

xt.

Because 6 b−i( ) is always nonempty and finite, the best
responses BRi : R

n−1+ �R+ defined in Section 2 are well de-
fined, and so is BR*

i : R
n−1+ �R+ in (2). With these changes to

the definition of πi, the rest of the analysis also extends to
the case of ties in bids.
A.2. Proofs of the Main Results
All the results are proven for the case inwhich n � S + 1. The
extension to the general case is straightforward but requires
more cumbersome notation.

A.2.1. Proof of Lemma 1. Let b̂ ∈ E* v( ). By definition, for any
i, ρ i( ) � s impliesπi(b̂−i) � s if s ≤ S andπi(b̂−i) � S + 1 if s > S.
Hence, b̂πi b−i( )

−i � b̂s+1 whenever s ≤ S. Now, for any i such that
ρ i( ) ≤ S and j s.t. ρ( j) � ρ i( ) + 1, the following must hold:

By the optimality of b̂i : vi − b̂ρ i( )+1
( )

xρ i( )

≥ vi − b̂ρ i( )+2
( )

xρ i( )+1; (A.1)

By the condition in (2) for j:

vj − b̂ρ i( )+2
( )

xρ i( )+1 � vj − b̂ρ i( )+1
( )

xρ i( ). (A.2)
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Rearranging, we obtain

vi ·
(
xρ i( ) − xρ i( )+1

)
≥ b̂ρ i( )+1xρ i( ) − b̂ρ i( )+2xρ i( )+1

� vj ·
(
xρ i( ) − xρ i( )+1

)
,

which implies that vi > vj (because, by assumption, xs > xs+1
for all s ≤ S and vi �� vj for all i �� j). Hence, in equilibrium, the
top S bidders are ranked efficiently among themselves. For
the others, for any i such that ρ i( ) > S, Equation (2) re-
quires that 0 � (vi − b̂i)xS; hence vi � b̂i whenever ρ i( ) > S. It
follows that b̂i � b̂i for all i (agents’ bids are efficiently
ranked) and b̂i � vi for all i ≥ S + 1. The equilibrium bid, bi �
vi − xi

xi−1 vi − bi+1( ), then follows immediately, applying Equa-
tion (2) for all i � 2, . . . , S with initial condition b̂S+1 � vS+1.
The only restriction this entails on b̂1 is that b̂1 > b̂2. Finally, note
that the equilibrium bid coincides with EOS’s lowest envy free
equilibrium (EOS, theorem 2) and with Varian’s lower-bound
symmetric Nash equilibrium (Varian 2007, equation 9). □

A.2.2. Proof of Theorem 1. We prove the statement by
induction on the size of the coalition. The induction basis is
the noncollusive benchmark (i.e., C| | � 1). In this case, all
players use their dominant strategies, bi � vi for each i, which
clearly ensures vi ∈ bi+1, vi−1( ) for all i, and the equilibrium
bids profile is as claimed in the theorem.

For the inductive step, suppose we have shown that the
result holds for all coalitions C′ such that C′ ⊆ C. We want
to show that it also holds for C. Let i be the lowest bidder
in the coalition, and let r denote its position. Then, its payoff
is equal to

ui � vixr −
∑S+1
t�r+1

bt xt−1 − xt
( )

.

It is useful to introduce notation to rank independents
among themselves based on their valuation. Let vI\C �
(vj)j∈I\C, and let vI\C k( ) � v|I\C|+1−kI\C denote the valuation of the
kth lowest value independent: for k � 1, vI\C 1( ) � v|I\C|I\C is the
lowest valuation among the independents, vI\C 2( ) � v|I\C|−1I\C
is the second lowest valuation among the independents,
and so on. Now, if i is the lowest-bidding member of the
coalition, all players placing lower bids are independents
and, therefore, bid according to their dominant strategy,
bj � vj. This, in turn, implies that bids in positions t � r +
1, . . . , S + 1 are ranked efficiently between themselves, but it
does not guarantee that bt � vt for each t ≥ r + 1 unless all
j ∈ C are such that j ≤ r. Thus, we conclude that bids bt for
t � r + 1, . . . , S + 1 are placed by the S + 1 − r lowest-valued
independents. Hence,

ui � vixr −
∑S+1
t�r+1

vI\C S + 2 − t( ) xt−1 − xt
( )

. (A.3)

Let us consider the function ũi k( ) of i’s payoff as a function
of the position k that i occupies, given that i is the lowest
bidder in the coalition. Let u*i :� maxk ũi k( ). Clearly, u*i ≥ ui.
We show next that if i �� max{j : j ∈ C}, then u*i < uC\ i{ }

i (the
payoff i would obtain by leaving the coalition). Hence, the
coalition is stable only if the lowest bidding member is also
the member with the lowest valuation.

First, we show that ũi is maximized only if i is placed
efficiently with respect to the independents. That is, for any
j ∈ I\C, j < i if and only if ρ( j) < r. We proceed by contra-
diction: suppose that there exist j ∈ I\C such that either j < i
and ρ( j) > r or j > i and ρ( j) < r. Consider the first case: be-
cause independents are ranked efficiently among themselves,
for any j, l ∈ I\C, l < j if and only if ρ l( ) < ρ( j). It follows that if
there exists j ∈ I\C : j < i and ρ( j) > r, such j can be chosen so
that j � r + 1; that is, j occupies the position immediately
following i’s. We next show that, in this case, i’s payoff would
increase if i dropped one position down. To see this, notice
that

ũi r + 1( ) − ũi r( )
� vi xr+1 − xr

( ) + vI\C S + 1 − r( ) xr − xr+1
( )

� vI\C S + 1 − r( ) − vi
( )

xr − xr+1
( )

,

where vI\C S + 1 − r( ) � vr+1 is the valuation of the highest
independent if i occupies position r. Because, by assumption,
xr > xr+1, it follows that

sign ũi r + 1( ) − ũi r( )( ) � sign vI\C S + 1 − r( ) − vi
( )

.

Under the absurd hypothesis, vI\C S + 1 − r( ) > vi; hence, ui
increases, dropping one position down. A similar argument
shows that in the second case of the absurd hypothesis,
that is, if there exists j ∈ I\C : j > i and ρ( j) < ρ i( ), ui could
be increased, climbing one position up from r to r − 1( ).
The result obtains considering the difference

ui r( ) − ui r − 1( ) � br−1 − vi
( )

xr−1 − xr
( )

≤ vI\C S + 2 − r( ) − vi
( )

xr−1 − xr
( )

, (A.4)
which holds because all bids for positions from ρ(j) down are
no higher than bj � vI\C S + 2 − r( ). The final expression is
negative under the absurd hypothesis.

We thus have proved that, in equilibrium, for all j ∈ I\C,
j < i if and only if ρ( j) < r. Hence, the lowest coalition bidder
is placed efficiently with respect to the independents, and
only independents are below it. Letting ) � { j ∈ C : j > i},
denote the set of coalition members with values lower than vi;
the lowest coalition bidder i, therefore, occupies position
i + |)|. (Clearly, i occupies the ith position if and only if ) � ∅,
i.e., if i, the lowest bidding member of the coalition, also has
the lowest value in the coalition.) But then, setting r � i + ) in
Equation (A.3), we have that

u*i � vixi+|)| −
∑S+1

t�i+|)|+1
vI\C S + 2 − t( ) xt−1 − xt

( )
. (A.5)

We show next that ) �� ∅ implies u*i < uC\ i{ }
i . For any k, let b̄k

denote k’s bid in the equilibrium with coalition C\ i{ }. Be-
cause, under the inductive hypothesis, the equilibrium with
coalition C\ i{ } is efficient, b̄k � b̄k for any k, and hence,

uC\ i{ }
i � vixi −

∑S+1
k�i+1

b̄k
(
xk−1 − xk

)
.

By the inductive hypothesis, the equilibrium with this
smaller coalition is as in the theorem’s statement. Hence, b̄k <
vk−1 for all k ∈ I (if k is an independent because k bids
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b̄k � vk < vk−1; if k is the highest-value member of the co-
alition, because b̄k ∈ b+k+1, vk−1

( )
; otherwise, b̄k � b+k+1 < vk−1).

We also show that b̄k ≤ vI\C(S + 2 − k) for all k. To this end,
observe that all k ≥ max ){ } are independents (both before
and after i drops out) so that, for all k ≥ max ){ }, b̄k �
vk � vI\C(S + 2 − k): these are the lowest bidding and the
lowest-value bidders; hence, also the lowest independents.
For k < max ){ }, at least one of the S + 2 − k elements of the set
k, k + 1, . . . , S + 1{ } is a member of the coalition. It follows that
the valuation of the S + 2 − k( )th lowest independent is higher
than vk; hence, vI\C(S + 2 − k) ≥ vk−1, which, in turn, implies
vI\C(S + 2 − k) > b̄k. Overall, we have that b̄k < vk−1 and b̄k ≤
vI\C(S + 2 − k) for all k ∈ I. Using the first inequality for k ≤
i + |)| and the second inequality otherwise, we see that, if
) �� ∅,

uC\ i{ }
i � vixi −

∑i+|)|
k�i+1

b̄k
(
xk−1 − xk

)
− ∑S+1

k�i+|)|+1
b̄k
(
xk−1 − xk

)
> vixi −

∑i+|)|
k�i+1

vk−1
(
xk−1 − xk

)
− ∑S+1

k�i+|)|+1
vI\C

(
S + 2 − k

)(
xk−1 − xk

)
. (A.6)

Combining (A.5) and (A.6), we get

uC\ i{ }
i − u*i > vi

(
xi − xi+|)|

)
− ∑i+|)|

k�i+1
vk−1

(
xk−1 − x

)
≥ vi

(
xi − xi+|)|

)
− vi

(
xi − xi+|)|

)
� 0,

where the latter inequality follows because vk−1 ≤ vi for all
k ≥ i + 1. Hence, whenever) �� ∅, we obtain ui < uC\ i{ }

i : that is,
the recursive stability condition (S.2) is violated for bidder i.
) � ∅, therefore, is a necessary condition for equilibrium.
Hence, in any equilibrium, the lowest coalition bidder also
has the lowest valuation in the coalition. Moreover, if ) � ∅,
u*i � uC\ii (by Equations (A.5) and (A.6)); hence, in equilib-
rium, ui � u*i and i � ρ i( ):

ui � vixi −
∑S+1
k�i+1

vk
(
xk−1 − xk

)
� uC\ i{ }

i . (A.7)

Furthermore, because the payment of coalition members
above i is strictly decreasing in bi and positions are in-
dependent of bi (as long as bi ∈ bi+1, bi−1( )), the coalition sets bi
as low as possible to ensure i’s efficient position. That is,
bi � b+i+1 � v+i+1.

We have determined the positions and bids of all bidders
k ≥ i. We know that the remaining coalition members are
positioned above these bidders and do not affect ui. Thus, the
remaining task for the coalition is to choose bids (bj)j∈C\ i{ } in
order tomaximize

∑
j∈C\ i{ } uj, subject to the constraint that bj >

bi for all j ∈ C\ i{ }. We now need to look separately at two
cases: |C| � 2 and |C| > 2.

First, if |C| � 2, the task is simply to maximize the payoff of
the other member of the coalition, j, by determining its po-
sition relative to the remaining independents. But this, by the
usual argument, is achieved when j is placed efficiently with
respect to these independents. This is achieved if and only if
bj ∈ (bj+1, vj−1).

Second, if |C| > 2, note that, even when one of the members
j ∈ C\ i{ } drops out, i still remains a nontop member of the
coalition. Hence, its bid does not change. Naturally, the bids
of all k > i (who are independents) do not change either.
Hence, the payoffs of all bidders k < i both before and after
one of the coalition members (other than i) drops out are
shifted by the same constant relative to a game in which the
bidders k ≥ i (and the corresponding slots) are removed: thus,
the presence of these bidders has no effect on either the
payoffs or the outside options. It follows that the problem we
are solving at this stage is exactly equivalent to finding the
equilibrium in the VCG game played between coalition C\ i{ }
and independents {j ∈ I\C : j > i} with slots x1, . . . , xi−1. This
game has coalition size C − 1, so the solution follows by the
inductive hypothesis. □

A.2.3. Proof of Theorem 2. Because the UC restrictions
imply the stability restriction (S.1), the agency’s problem in
the GSP auction with the feigned values restriction reduces to

max
bC

uC bC, β* bC( )( )
s.t. (R) ∃v′C ∈ R|C|

+ s.t. bC, β*(bC)( ) ∈ E* v′C, vC
( )

(S.2) ∀i ∈ C, ui bC, β*(bC)( ) ≥ ūC\ i{ }
i ,

where the equilibrium conjectures β* are such that

∀bC, β* bC( ) ∈
{
b*−C ∈ Rn−|C|

+ : ∀i ∈ I\C, b*i ∈ BR*
i bC, b

*
−i,−C

( )}
.

Let ∼ be an equivalence relation on Rn+ such that v ∼ v′
(respectively, b ∼ b′) if and only if v and v′ only differ in the
highest valuation (highest bid) but not in the identity of the
highest valuation individual (bidder).30 For any v ∈ Rn+, let v[ ]
( v[ ]) denote the equivalence class of v (b) under this equiv-
alence relation, and let V∼ (B∼) denote the set of such equiv-
alence classes. Next, consider the competitive equilibrium
correspondence E* : Rn+�Rn+, which assigns to each profile
v ∈ Rn+ the set E* v( ) of competitive equilibria in the GSP
auction. Denote the set of equivalence classes under ∼ on the
range of E* as E*(V∼) ⊆ V∼ and let E∼ : V∼ → E*(V∼) denote
the function induced by E*. Lemma 1 implies that E∼ is a bi-
jection. Further note that the payoffs of all bidders in the GSP
with bids E*(v) are the same as in the VCG with truthful bids:

For all v ∈ Rn
+ and i ∈ I, u9i (v) � u&i

(
E*(v)

)
. (A.8)

Because E∼ is a well-defined function on the equivalence
classes of ∼, the profile of valuation v′C in the restriction (R)
uniquely pins down (bC, b*−C) ∈ E*(v′C, v−C) up to the highest
overall bid. That is, (bC, b*−C), (b′C, b′−C) ∈ E*(v′C, v−C) if and
only if (bC, b*−C) ∼ (b′C, b′−C). Together with (A.8), this im-
plies that u&i (bC, b*−C) � u9i (v′C, v−C) so that also u&C(bC, b*−C) �
u9C (v′C, v−C). As a result, we can now easily recast the co-
alition’s problem as one of choosing v′C (the coalition’s
feigned valuations):

max
v′C

u9C v′C, v−C
( )

s.t. (S.2) ∀i ∈ C, u9i v′C, v−C
( ) ≥ ūC\ i{ }

i .

(Notice that the restriction (R) and the restriction that β*(bC)
is always in the set BR*−C are both built in this formulation of
the problem.) In the following, we let ūCi denote bidder i’s
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payoff when the coalition is C in the GSP game being
studied, and ūC;9i denotes the same object in the corre-
sponding VCG game. With this in in mind, note that ūCi �
ūC;9i for all i when |C| � 1, and the recursion defining ūCi is
identical to that defining ūC;9i . It follows that the coalition’s
problem is now equivalent to its problem in the VCG game.
By Theorem 1, the solution v′*C is unique up to the report of
the highest coalition member, v′*min(C).

Finally, by (R), theUC-RAE of theGSP satisfies (b*C, β* b−C( )) ∈
E*(v′*C , v−C). Hence, all bidders’ positions and payoffs in
this GSP equilibrium are the same as in the unrestricted RAE
of the VCG, (v′*C , v−C). Because the ordering of bidders in the
RAE of the VCG is efficient (Theorem 1), so is the ordering
of bidders in the UC-RAE of the GSP. However, because v′*
is unique only up to the highest coalition bid, (b*C, β* b−C( )) is
not uniquely defined. There exists a continuum of equilib-
ria differing in the payments of all bidders above the highest
coalition bidder: for each v′*min(C) ∈ (v′*min(C)+1, vmin(C)−1), there
exists one equivalence class of UC-RAE of the GSP
[(b*C, β* b−C( ))]. Because E* is unique only up to the highest
overall bid, there also exist a continuum of equilibria yielding
the same payoffs and positions but differing in the highest
overall bid within each [b*]. In this sense, the equilibrium is
unique up to the highest coalition and overall bids. □

A.2.4. Proof of Theorem 3. The claim about the possibility
of strict ordering in revenues is proven by Example 6 in the
text. Here we prove the general claims about existence,
uniqueness, and weak ordering. The proof is by construction,
and it is based on the following intermediate result. □

Lemma A.1. Fix C ⊂ I, and let _ be a finite index set. Let
{b(k)}k∈_ be a collection of bid profiles such that for each
k ∈ _, b(k)−C ∈ BR*−C(b(k)C ) and ρ(i; b(k)) � i for each i ∈ I. Define
+({b(k)}k∈_) ≡ b̂ ∈ Rn+ as follows:

b̂i �

b̂i � mink∈_ b(k)i if i ∈ C

b̂i � vS+1 if i � S + 1 /∈C ;

1
xi−1

[∑c̄ i( )−1
j�i

vj xj−1 − xj
( ) + b̂c̄ i( )xc̄ i( )−1

]
otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where c̄ i( ) :� min j ∈ C j > i

{ }
if i < maxC and c̄ i( ) � S + 1 oth-

erwise. Then (i) ρ(i; b̂) � i ∀i ∈ I, (ii) ui(b̂) ≥ ui(b(k)) for all i ∈ I
and for all k ∈ _ with strict inequality whenever b̂c̄ i( ) �� b(k)c̄ i( ),
(iii) uC(b̂) ≥ uC(b(k)) for all k ∈ K with strict inequality whenever
∃i ∈ C\minC such that b(k)i �� b̂i, and (iv) b̂−C ∈ BR*−C(b̂C).

Proof of Lemma A.1. We begin by noting that, because for
each k ∈ _, b(k)−C ∈ BR*−C(b(k)−C) and ρ(i; b(k)) � i for each i ∈ I, we
have that ∀k ∈ _, i /∈C s.t. i �� S + 1,

b(k)i � 1
xi−1

∑c̄ i( )−1
j�i

vj
(
xj−1 − xj

)
+ b(k)c̄ i( )x

c̄ i( )−1
[ ]

,

and b(k)i � vS+1 if i � S + 1 /∈C (c̄ i( ) is defined in the statement
in the lemma.)

The following two key observations are now immediate:
1. For every k ∈ _ and for every i ∈ I, b̂i ≤ b k( )

i : For i ∈ C,
b̂i ≤ b(k)i by the definition of coalition bids in the statement
of the lemma. For i � S + 1 /∈C, b̂i � vS+1 � b(k)i (the second
equality is because the lemma requires b(k)−C ∈ BR*−C(b(k)C )). Fi-
nally, for i /∈C s.t. i �� S + 1,

b̂i � 1
xi−1

∑c̄ i( )−1
j�i

vj xj−1 − xj
( ) + b̂c̄ i( )xc̄ i( )−1

[ ]

≤ 1
xi−1

∑c̄ i( )−1
j�i

vj xj−1 − xj
( ) + b(k)c̄ i( )x

c̄ i( )−1
[ ]

� b(k)i ,

where the inequality follows because, by definition, c̄ i( ) ∈
C ∪ S + 1{ }, and hence, b̂c̄ i( ) ≤ b(k)c̄ i( )). Note that the inequality
is strict whenever b̂c̄ i( ) �� b(k)c̄ i( ).

2. For each i ∈ I, there exists k ∈ _ such that bi � b(k)i . For
i ∈ C this is immediate from the definition. For i � S + 1 /∈C,
b̂i � vS+1 � b(k)i for all k (cf. previous point). For i /∈C s.t.
i �� S + 1, the result follows because c̄ i( ) ∈ C ∪ S + 1{ }; hence,
there exists k ∈ _ such that b̂c̄ i( ) � b(k)c̄ i( ) so that

b̂i � 1
xi−1

∑c̄ i( )−1
j�i

vj
(
xj−1 − xj

)
+ b̂c̄ i( )xc̄ i( )−1

[ ]

� 1
xi−1

∑c̄ i( )−1
j�i

vj
(
xj−1 − xj

)
+ b(k)c̄ i( )x

c̄ i( )−1
[ ]

� b(k)i ,

and we can now establish the lemma’s results:
(i) ρ(i; b̂) � i for all i ∈ I: Let i, j ∈ I be s.t. i < j. We show

that b̂i > b̂j. By point 2, there exists k ∈ _ such that b̂i � b(k)i .
Because, by assumption, b(k) is ordered efficiently, b(k)i > b(k)j .
By point 1, b(k)j ≥ b̂j. Hence, b̂i � b(k)i > b(k)j ≥ b̂j, as desired.

(ii) ui(b̂) ≥ ui(b(k)) for all i ∈ I and all k ∈ _ with strict in-
equality if b̂c̄ i( ) �� b(k)c̄ i( ): because i obtains its efficient position

under both b̂ (established in (i)) and b(k) (given),

ui b̂
( )

� vi − b̂i+1
( )

xi ≥ vi − b(k)i+1
( )

xi � ui b(k)
( )

,

where the inequality holds because b̂i+1 ≤ b(k)i+1 by point 1
with strict inequality if b̂c̄ i( ) �� b(k)c̄ i( ) as noted at the end of point 1.

(iii) uC(b̂) ≥ uC(b(k)) for all k ∈ K with strict inequality
whenever ∃i ∈ C\minC such that b(k)i �� b̂i: the weak in-
equality follows immediately from part (ii). Now, suppose
b(k)i �� b̂i for some i ∈ C\minC, and let j � max k ∈ C|k < i{ } be
the coalition member directly above i in the ranking of val-
uations. Then c̄ j

( ) � i so that, by the strict inequality part of
result (ii), uj(b(k)) < uj(b̂). Because uj′ (b(k)) ≤ uj′ (b̂) for all other
terms in the sums defining uC(·), this completes the proof for
strict inequality.

(iv) b̂−C ∈ BR*−C(b̂−C): the LREF condition holds by con-
struction. We must simply prove the Nash condition, that is,
that each i /∈C (weakly) prefers position i to position j for all
j �� i. Define j′ � j + 1 if j > i and j′ � j if j < i. Note that, if
bidder i deviates to position j �� i under bid profile b̂, it gets
payoff (vi − b̂j′ )xj. By the observation in point 2, there exists
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some k such that b̂j′ � b(k)j′ so that (vi − b̂j′ )xj � (vi − b(k)j′ )xj.
Because b(k)−C ∈ BR*−C(b(k)−C) and ρ(i; b(k)) � i, i cannot profitably
deviate from position i to position j �� i under bid profile b(k),
that is, (vi − b(k)j′ )xj ≤ (vi − b(k)i+1)xi. Finally, by point 1, b(k)i+1 ≥ b̂i+1
so that (vi − b(k)i+1)xi ≤ (vi − b̂i+1)xi. Putting these results together,

vi − b̂i+1
( )

xi ≥ vi − b(k)i+1
( )

xi ≥ vi − b(k)j′
( )

xj � vi − bj′
( )

xj.

That is, bidder i cannot profitably deviate to position j �� i
under bid profile b̂ as desired. This concludes the proof of
the lemma.

Armedwith this lemma, we can now prove Theorem 3.We
begin with existence and weak ordering of revenues, using
induction on the coalition’s size, C. For the induction basis,
we use |C| � 1. Both existence and weak order now hold
trivially as both the efficiency-constrained RAE of the GSP
and the RAE of the VCG mechanism are equal to the LREF
equilibrium by definition.

For the inductive step, we fix C and suppose that, for all
coalitions of size |C| − 1 Eff-RAE exist; then we show that Eff-
RAE also exists for C and that, in each of these RAE, the
coalition’s surplus is no lower than in any RAE of the VCG
mechanism, and the auctioneer’s revenue is no higher than in
a corresponding RAE of the VCG mechanism.

Fix C, and let bUC ∈ Rn+ be the bids in the UC-RAE of the
GSP auction with the same coalition C in which the top co-
alition member is placing the highest possible bid (this exists;
it is efficient and unique by Theorem 2). Observe that because
of the bijection between UC-RAE of the GSP auction and
unconstrained RAE of the VCG mechanism (established in
Theorem 2), we can use the coalition’s surplus in the GSP
auction with bids bUC as our reference point. Next, note that,
for any bC, the beliefs β* bC( ) in any Eff-RAE of the GSP auction
are uniquely determined by the Varian/EOS recursion.
Hence, a complete Eff-RAE, (b*, β*) ∈ Rn+ × B*, if it exists, is, in
fact, fully determined by b*C ∈ RC+. We now proceed to prove
that such a b*C exists by constructing a candidate profile.

For each i ∈ C, let b(i) be the bids in an Eff-RAE with co-
alition C\ i{ } (these exist under the inductive hypothesis). Let
b(0) � bUC. Let b̂ � +({b(i)}i∈C∪ 0{ }), where + is as defined in
Lemma A.1. Now, by results (i) and (iv) of Lemma A.1, we
have ρ(i; b̂) � i for all i ∈ I and b̂−C ∈ BR*−C(b̂C). It follows that
b̂C ∈ REFF

C . By result (ii) of LemmaA.1, ui(b̂) ≥ ui(b(k)) for each i.
Moreover, by construction, ui(b(k)) � ūC\ i{ }

i for each i ∈ C; hence,
profile b̂ satisfies the recursive stability condition. It follows that
b̂C is a valid bid vector for coalition C trying to achieve an Eff-
RAE and that b̂−C � β*(b̂C), where β* are the unique beliefs
consistent with Eff-RAE. Maintaining the assumption of finite
bid increments, as in Theorems 1 and 2, the coalition is, therefore,
maximizing over a nonempty, finite set of valid bid vectors so
that amaximum, b*C, exists. Thus, an efficiency-constrained RAE
for coalition C exists (and is equal to ((b*C, β*(b*C)), β*)).

Now the weak ordering of coalition surplus is immediate:
result (iii) of Lemma A.1 implies uC(b̂) ≥ uC(bUC), and clearly the
optimal bidprofile (b*C, β*(b*C))must satisfyuC(b*C, β*(b*C)) ≥ uC(b̂).
It follows that uC(b*C, β*(b*C)) ≥ uC(bUC).

Next, we establish the ordering for the auctioneer’s revenues.
We first show that, in the Eff-RAE b*, β*

( )
, the bid of coalition

members other than the highest valuation isweakly lower than in
b̂. To this end, suppose that there exists some i ∈ C\minC such
that b*i > b̂i. Let b′ � +({b*, b̂}). Bypart (i) of LemmaA.1, b′C is still
a valid bid vector for the coalition, whereas part (iii) implies
uC(b′C, β*(b′C)) > uC(b*C, β*(b*C)), which contradicts the optimality
of b*C. We, thus, conclude that b*i ≤ b̂i for all i ∈ C\minC.

Because the independents’ bids are fixed by the recursion
under both b̂ and b*, we know that, in fact, b*i ≤ b̂i for all
i > minC. Because, by construction, b̂i ≤ bUC

i for all i ∈ I, we,
thus, have b*i ≤ bUC

i for all i > minC. If minC � 1, this com-
pletes the proof that the auctioneer’s revenues are weakly
lower under b* than under bUC. If minC > 1, we need to show
that even the top coalition bidder in b* cannot bid more than
this bidder’s maximum possible UC-RAE bid. Because bUC

minC
is themaximumbid that the top coalition bidder can place in a
UC-RAE, it is equal to (cf. Theorem 2)

bUC
minC � vminC−1 − xminC

xminC−1 vminC−1 − bUC
minC+1

( )
.

If b*minC > bUC
minC, then the independent above the top co-

alition member obtains a payoff

U0 �
(
vminC−1 − b*minC

)
xminC−1 <

(
vminC−1 − bUC

minC

)
xminC−1

�
(
vminC−1 − bUC

minC+1
)
xminC,

where the last inequality follows by substituting in the ex-
pression for bUC

minC from before.
Dropping one position down, this independent would

obtain

U′ �
(
vminC−1 − b*minC+1

)
xminC ≥

(
vminC−1−bUC

minC+1
)
xminC >U0,

where the first inequality follows because b*i ≤ bUC
i for all i >

minC as established. Thus, this independent has a profitable
deviation: a contradiction. We conclude that b*minC ≤ bUC

minC.
But then, by the independents’ recursion, we also have b*i ≤
bUC
i for all i ≤ minC. Because we already knew that the b*i ≤
bUC
i for all i > minC, we have established that all bids in b* are
weakly lower than in bUC, which completes the claim about
the auctioneer’s revenues.

Next, we show that the Eff-RAE is unique up to the highest
coalition bid. To this end, fix some coalition C ⊆ I and let bR1

and bR2 be two (possibly equal) Eff-RAE for C. Let b̂ :�
+({bR1, bR2}). By results (i), (iii), and (iv) of Lemma A.1, b̂ is
still efficiently ordered and b̂−C ∈ BR*−C(b̂C) so that b̂C is in the
set of permitted bids for the coalition in the efficiency-
constrained problem without the recursive stability re-
striction with b̂−C ∈ β*(b̂C). Furthermore, by result (ii) of
Lemma A.1, each coalition member is at least as well off
under b̂ as under bR1 and bR2. Therefore, the fact that bR1 and bR2

satisfy the recursive stability condition implies that so does
b̂. The optimality of bR1C and bR2C in this set, therefore, implies
that uC(b̂) ≤ uC(bRk) ∀k ∈ 1, 2{ }. But result (iii) of Lemma A.1
then implies that b̂i � bR1i � bR2i for all i ∈ C\minC.

Combining these results yields bR1i � bR2i � b̂i for all i ∈ C\
minC. Because coalition bids also uniquely determine in-
dependents’ bids, the Eff-RAE is, thus, unique up to the highest
coalition bid. This completes the proof. □
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A.3. Multiple Agencies
A.3.1. Formal Definition. We consider the case with two
DMAs, which coordinate the bids of subsets C1,C2 ⊆ I of
bidders s.t. C1 ∩ C2 � ∅. Similar to the baseline notionwith a
single DMA, the definition of RAEwithmultiple agencies is
recursivewith the outside option of coalitionmember i ∈ C1

being defined as its equilibrium payoff in the game with
coalitions C1\ i{ },C2( ). Hence, the recursion in the RAE with
multiple coalitions involves, for every Cg, a recursion
similar to the one for the single DMA, but with initial
condition set by the RAE in which C−g is the only coalition.

Let G v( ) � Ai, ui( )i�1,...,n denote the baseline game (e.g.,
GSP or the VCG) given the profile of valuations v � vi( )i∈I .
For any C1,C2 ⊆ I with |Cg| ≥ 2 and C1 ∩ C2 � ∅, we let
C :�C1 ∪ C2 . For each g � 1, 2, coalition Cg chooses a vector
of bids bCg � (bj)j∈Cg

∈ ×j∈CgAj, and let bC � (bC1 , bC2 ). Given
bC, independents i ∈ I\C simultaneously choose bids bi ∈ Ai.
We let b−C :� (bj)j∈I\C and A−C :� ×j∈I\C Aj. Given profile b
or b−#, we let b−i,−C :� (bj)j∈I\C:j ��i. As before, each DMA
maximizes the sum of the payoffs of its members uCg b( ) :�∑

i∈Cg ui b( ) under the three constraints from the single-agency
model given conjectures about both the independents and
the other coalition.

A.3.1.1. Stability 1 (Stability with Respect to Independents).
For any i ∈ I\C, let BR*

i : A−i �Ai, BR*−C : AC �A−C, and
SC be defined as in the single-agency case (except now
C � C1 ∪ C2). For each agency Cg, we let

SCg � bCg ∈ ACg : ∃bC−g ∈ AC−g s.t. bCg , bC−g

( )
∈ SC

{ }
.

A.3.1.2. Stability 2: ((Recursive) Stability with Respect to
Coalition Members). Let B* be defined as in the single-
agency case. Letting E5 C1,C2( ) denote the set of RAE
outcomes of the game with coalitions C1 and C2 given re-
strictions5 (and refinementBR*

i ), we initialize the recursion
setting E5(C′

g,C−g) � E5(C−g) if |C′
g| � 1 (i.e., if an agency

controls only one bidder, then theRAE are the same aswhen
there exists only the other agency). Suppose next that
E5(C′

g,C−g) has been defined for all subcoalitions C′
g ⊂ Cg.

Foreach i ∈ Cg andC′
g ⊆ Cg\ i{ }, let ūC

′
g ,C−g

i �minb∈E5(C′
g ,C−g) ui b( ).

The second stability requirement, therefore, requires
ui ≥ ūC−g\ i{ },Cg

i . Finaly, we define the set of rational conjec-
tures about the opponent coalition as B*

g � {βg ∈ (AC−g )SCg :
βg(bCg ) ∈ BRC−g(bCg ) for all bCg ∈ SCg}, where SCg � {bCg ∈SCg :

BRC−g(bCg ) �� ∅}, and
BRC

−g bCg

( )
� argmax

bC−g
uC−g

(
bCg , bC−g , β bCg , bC−g

( ))
s.t. (R) bCg , bC−g

( )
∈ RC

(S.1) bCg , bC−g

( )
∈ SC

(S.2) for all i ∈ C−g,ui ·
bCg , bC−g , β bCg , bC−g

( )( )
≥ ūC−g\ i{ },Cg

i .

Definition A.1. ARAE of the gameGwith coalition structure
C1,C2( ) given restrictions 5 and independents’ equilibrium

refinement BR* is a profile of bids and conjectures b*, β*,
(

β*1, β
*
2) ∈ AC × B* × B*

1 × B*
2 such that

1. The independents play a mutual best response: for all
i ∈ I\C, b*i ∈ BR*

i (b*−i).
2. The conjectures of the agencies are correct and consis-

tent with the exogenous restrictions: β*(b*C) � b*−C, and, for each
g∈ 1,2{ }, β*g(b*Cg

) � b*C−g , and (bCg ,β
*
g(bCg ),β*(bCg ,β

*
g(bCg ))) ∈R C( )

for all bCg ∈ RCg .
3. Each agency best responds to the conjectures β* and β*g

given the exogenous restrictions (R) and the stability re-
strictions about the independents and the coalition members
(S.1 and S.2, respectively): for each g � 1, 2,

b*Cg
∈ argmax

bCg

uCg bCg , β
*
g bCg

( )
, β* bCg , β

*
g bCg

( )( )( )
s.t. (R) bCg , β

*
g bCg

( )
, β* bCg , β

*
g bCg

( )( )(( )
∈ RC

(S.1) bCg , β
*
g bCg

( )
, β* bCg , β

*
g bCg

( )( )( )
∈ SC

(S.2) for all i ∈ Cg,ui bCg , β
*
g bCg

( )
,

(
· β* bCg , β

*
g bCg

( )( ))
≥ ūCg\ i{ },C−g

i .

The set of RAE outcomes for the game with coalitions
C1,C2( ) (given BR* and RC) is

E5 C1,C2( )
� b* ∈ A : ∃β*, β*1, β*2 s.t. b*, β*, β*1, β

*
2

( )
is a RAE

{ }
.

(A.9)

Note that this definition does not uniquely pin down the
bid of the top bidder of the “lower” coalition. To remove
this ambiguity, in the following, we break these ties by
making this coalition member bid as if it were an in-
dependent whenever such bids are still in the optimal set.

A.3.2. Proof of Theorem 4. We prove the theorem by
providing a precise characterization of the RAE in the VCG
and the UC-RAE of the GSP. That is, we show that with two
coalitions, C1 and C2, the following statements hold:

1. If, in the overall value ranking, no member of one co-
alition is adjacent to a member of the other coalition, then

(a) There exists a unique RAE of the VCG mechanism.
In this equilibrium, the bid profile b̂V is such that

b̂Vi �
vi, if i ∈ (I\ C) ∪min C1 ∪minC2,

b̂
V
i+1

( )+
, if i ∈ C\ min C1 ∪minC2{ } and i ≤ S,

{
(A.10)

where v0 :�∞ and b̂Vn+1 :� 0.
(b) There exists a unique UC-constrained RAE of the

GSP auction. In this equilibrium, for every i,

b̂Gi � v f
i −

xi

xi−1
vf
i − b̂i+1

( )
,

where v f
i is equal to bidder i’s bid (reported value) in the

VCG mechanism (as described in statement 1): v f
i � b̂Vi .

2. If, in the overall value ranking, a nontop member of one
coalition is directly above a nontop member of the other
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coalition (i.e., there exist i and i + 1 such that i ∈ Cj,
i + 1 ∈ Cj′ , j �� j′, i �� minCj, and i + 1 �� minCj′ ), then no
unconstrained RAE of the VCG and no UC-RAE of the GSP
exist.

We prove the results for the VCG (statement 1(a) and the
VCG part of statement 2). The proofs of the GSP results are
analogous.

First, we show that, regardless of whether there are or are
not adjacencies in the value rankings, an arrangement like
that in statement 1(a) is the only possible RAE of the VCG.We
then show that this candidate is, in fact, an equilibrium when
there are no adjacencies, but not when there are adjacencies
involving nontop bidders.31

Before proceeding to the proof, it pays to make two ob-
servations about the best-response correspondences BRC

g . □

Observation A.1. The best-response function of any co-
alition requires that each nontop member of the coalition bid
just above the bid below. Formally, let i ∈ Cg\minCg and let b
be such that bCg ∈ BRC

g (bC−g ). Then bi � (bρ(i)+1)+.

Proof of Observation A.1. Suppose that bi �� (bρ(i))+, and let
δ � bi − bρ(i). Now note that in the definition of BRC

g , coalition
g takes the bids of the other coalition (and the independents)
as fixed. Thus, lowering bi to bρ(i)+1 + δ/2 < bi does not change
the allocation but reduces the payments of all higher-ranked
members of Cg by (δ/2)(xρ(i)−1 − xρ(i)) > 0 and is therefore a
profitable deviation for Cg, a contradiction. □

Observation A.2. The best-response function of any co-
alition requires that no member of the coalition (top or
nontop) be placed above a bidder bidding higher than this
member’s value. Formally, if i ∈ Cg and bCg ∈ BRC

g (bC−g ), then
vi ≥ bρ(i)+1.

Proof of Observation A.2. Suppose that vi < bρ(i)+1 and
consider the deviation in which Cg lowers bi to (bρ(i)+1)−.
Note that this deviation improves i’s individual payoff
by (bρ(i)+1 − vi)(xρ(i) − xρ(i)+1) > 0. Also observe that the de-
viation decreases the payments of higher-ranked coali-
tion members (if any) by (bi − bρ(i)+1)(xρ(i)+1 − xρ(i)) > 0.
Thus, the deviation is unambiguously profitable for the
coalition. □

With these observations in hand, we proceed to the proof
of Theorem 4.

As in Theorem 1, the proof is by recursion on the overall
size of the coalition |C| � |C1| + |C2|. The induction basis is
the case of no coalitions (|C| � 2, that is, |C1| � |C2| � 1), for
which the result holds trivially by EOS. For the inductive
step, we first look at the overall lowest placed coalition
bidder, i. The same argument as in the proof of Theorem 1
shows that because of the recursive stability condition, this
bidder is, in fact, the lowest-valued bidder among all co-
alition bidders (i � max(C1 ∪ C2)) and that itmust occupy its
efficient position (ρ(i) � i). The rationale is the same as in
Theorem 1: because there are only independents below this
bidder, j cannot be compensated by the rest of the coalition
for taking an inefficient position (which the individually
bidder prefers). Furthermore, by Observation A.1, bi � v+i+1.

Just as in the proof of Theorem 1, after fixing the lowest
coalition bidder’s bid,we can essentially remove this bidder
and all lower-valued independents from the analysis and
proceed to the next-lowest-placed coalition bidder. Unless
this bidder is the top bidder of a coalition, the same ar-
gument as in the proof of Theorem 1 again applies to show
the bidder is placed in its efficient position. In addition, by
Observation A.1, it is bidding just above the value of the
bidder just below. We then move to the next-lowest-placed
coalition bidder.

Now suppose that we reach the top bidder of some co-
alition, bidder i. As in Theorem 1, this bidder must simply
set its bid so as to maximize its own payoff (as there are no
other coalition members above, whose payoffs it would
affect). As in Theorem 1, this bidder cannot be placed di-
rectly above a higher-valued independent or directly below
a lower-valued independent by the standard EOS argument
(e.g., when placed directly above jwith vj > vi, i can increase
its payoff by Δx(vj − vi) > 0 if it drops one position down).
Unlike Theorem 1, however, this does not necessarily
guarantee the efficient placement of i as i could be placed
directly below a lower-valuedmember of the other coalition
(i cannot be placed above a higher-valued member of the
other coalition because, by construction, i is the lowest-
placed remaining member of C with all previous members
placed in their efficient positions).

To rule out this remaining possibility, suppose i is placed
directly below the other coalition’smember jwith vi > vj. By
Observation A.1, this means that bi < vj < vi. But consider
the deviation in which bidder i’s bid is changed to b′i � v+j >

bi (note also that b′i < vi because vi > vj). By Observation A.2,
this deviation causes the other coalition to move bidder j
(and any other memberswith values below b′i ) below bidder i,
reducing their bids to no more than b′i . Consequently,
bidder i gains at least one position, which happens at a price
that is less than vi. Therefore, bidder i’s payoff increases
by (at least) (vi − b′ρ(i)−1i − xρ(i)) > 0. The deviation is, thus,
profitable.

This completes the proof that the top bidder of each
coalition must occupy its efficient position and, therefore,
bid its true value (by the assumed equilibrium selection).

We now can repeat these arguments for all remaining
coalition bidders until all of their bids are fixed. We have,
thus, proved that the only possible equilibrium has all
bidders placed efficiently with bids as specified in the
theorem statement.

We next verify that this candidate is, in fact, an equi-
librium when no members of different coalitions are ad-
jacent. Note that, for the top bidders of both coalitions, this
is equivalent to checking that they do not have any in-
dividually profitable deviations (because their bids and
positions relative to bidders outside of their coalition do not
affect the payoffs of the other members off their coalition),
and for nontop bidders, any deviation must also be weakly
profitable individually as they are already held to their
outside options in the candidate equilibrium. Also, because
inefficient reversals within a coalition are never profitable
for the coalition, we need to consider only deviations that
preserve ranking within a coalition. Now, for deviations
upward, consider any coalition bidder i such that the bidder
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directly above is not amember of the same coalition. If i is its
coalition’s top bidder, then bi � vi, and hence, bj > bi � vi for
all bidders above i. Then the standard EOS argument shows
that i does not have a profitable deviation upward. If i is not
a top bidder, then, by assumption, the bidder directly above i
(that is, bidder i − 1) is a higher-valued independent, so
bi−1 � vi−1 > vi, and again, bj ≥ bi−1 > vi for all bidders above i.
The standard EOS argument again shows that i does
not have a profitable deviation upward. For deviations
downward, consider any coalition bidder i such that the
bidder directly below is not a member of the same coalition.
If i is its coalition’s top bidder, then bi � vi, and hence, bj <
bi � vi for all bidders below i. Then the standard EOS ar-
gument shows that i does not have a profitable deviation
downward. If i is not a top bidder, then, by assumption, the
bidder directly below i (that is, bidder i + 1) is a lower-
valued independent, so bi+1 � vi+1 < vi, and again, bj ≤ bi+1 <
vi for all bidders below i. The standard EOS argument again
shows that i does not have a profitable deviation down-
ward. This completes the proof of the theorem.

Finally, we show that there is no equilibrium if there are
any cases in which nontop members of different coalitions
are adjacent to each other. That is, suppose that vi ∈ Cj and
vi+1 ∈ Ck �� Cj with vi �� minCj and vi+1 �� minCk. By the first
part of the proof, we know that the only candidate equi-
librium has i and i + 1 placed in their efficient positions with
bi+1 � b+i+2 < vi+1 and bi � b+i+1 < vi+1 (recall that the statement
about the magnitudes of the bids follows from Observa-
tion A.1 about the best-response functions). However, it is
obvious that bi+1 is not a (static) best response to bi: if,
holding bj fixed, Ck deviates to setting b′i+1 � b+i , i + 1’s in-
dividual payoff increases by (vi+1 − bi)(xi − xi+1) > 0without
perceptibly increasing the payoff of other members of Ck.
Thus, bi+1 /∈BRk(bCj ), that is, we are not in an RAE.

Endnotes
1Mansour et al. (2012) first pointed at the potential risk of collusive
bidding that intermediaries posed for online ad auctions. That paper
focused on the ad exchanges used for display ads. Balseiro and
Candogan (2017) is an important attempt to look at optimal con-
tracts for intermediaries, showing that, under such contracts, inter-
mediaries can bolster revenues for budget-constrained advertisers
while also increasing the overall market efficiency. Still in the context
of display ad auctions, Allouah and Besbes (2017) provide conditions
under which bid coordination by a common intermediary can either
improve or reduce the advertisers’ surplus. McAfee (2011) studies
how intermediaries help solve problems of limited information in ad
exchanges. The importance of information and learning in display
auction is also stressed in Despotakis et al. (2017).
2 In 2016, the total revenues of these seven agency networks
amounted to one third of those of Alphabet.
3The use of the word “collusion” in this paper is unrelated to any
assessment of the legal implications of agencies or advertisers behavior
under the competition laws of the United States or other countries.
4Google, for instance, reports passing from a positive growth rate in
its average cost per click of about 4% per year in the four years before
2012 to a negative growth rate in each year since thenwith an average
yearly decline of 9%. Source: 10-k filings of Alphabet, Inc.

5The problem of partial cartels is acknowledged as a major difficulty
in the literature (e.g., Hendricks et al. 2008). We discuss this point and
the connection with that literature in Section 5.
6This approach, which involves both equilibrium and recursive
stability restrictions, is closely related to the equilibrium binding
agreements of Ray and Vohra (1997), further discussed in Section 5.
7Anotable exception is Gomes and Sweeney (2014), which provides a
thorough analysis of competitive bidding in the GSP auction with
independent private values with a much more pessimistic outlook on
both the allocative and revenue properties of the GSP auction. Borgers
et al. (2013) maintain the complete information assumption but con-
sider a more general model of CTRs and valuations. Also, similar to
EOS, our baseline model abstracts from quality scores, which, in
practice, are often used to adjust advertisers’ bids in determining their
position and payments. Athey and Nekipelov (2014) introduced un-
certainty over quality scores in a model with competitive bids. We
discuss quality scores in Section 5.
8Formally, ρ i; b( ) :� |{ j : bj > bi} ∪ { j : bj � bi and j < i}| + 1. This tie-
breaking rule is convenient for the analysis of coordinated bidding. It
can be relaxed at the cost of added technicalities.
9Allowing ties in individuals’ bids or nongeneric indifferences
complicates the notation without affecting the results and the main
insights. See Section A.1 of the appendix for details on this.
10A Nash equilibrium bi( )i∈I is locally envy-free if xρ i( )(vi − bρ i( )+1) ≥
xρ i( )−1(vi − bρ i( )) for every i. EOS refinement is the lowest-revenue
Nash equilibrium that satisfies this condition. This refinement is
especially important because it conforms with the search engines’ tu-
torials on how to bid in these auctions. See, for instance, the Google
AdWord tutorial in which Hal Varian teaches how to maximize profits
by following this bidding strategy: http://www.youtube.com/watch?
v=jRx7AMb6rZ0.
11This is a simplifying assumption, which can be justified in a number
of ways. From a theoretical viewpoint, our environment satisfies the
informational assumptions of Bernheim and Whinston (1985, 1986).
Hence, as long as the agency is risk neutral, this particular objective
functionmay be the result of an underlying common agency problem.
More relevant from an empirical viewpoint, the agency contracts most
commonly used in this industry specify a lump-sum fee per advertiser
and per campaign. Thus, the agency’s ability to generate surplus for its
clients is an important determinant of its long-run profitability.
12The strength of constraint (5) clearly depends on the underlying
gameG and on the particular correspondence BR*−C. This restriction is
conceptually important and needed to develop a general framework
for arbitrary mechanisms, but it plays no role in our results because (5)
is either vacuous (Theorem 1) or a redundant constraint (Theorems 2
and 3). In particular, under the VCG mechanism (Theorem 1), we
have 6# � A#, thus making constraint (5) vacuous. As for the the
GSA, in the two theorems we consider, it is always the case that the
set of exogenous restrictions (i.e., RUC(C) for Theorem 2 and REff (C)
for Theorem3) are always a subset of6#, therebymaking constraint (5)
redundant in the agency’s optimization problem for those theorems.
13Note that by requiring β* ∈ B*, this equilibrium rules out the
possibility that the coalition’s bids are sustained by incredible threats
of the independents.
14Without the tie-breaking rule embedded in ρ (endnote 8), the
agency’s best replies may be empty valued. In that case, our analysis
would go through assuming that bids are placed from an arbitrarily
fine discrete grid (i.e., Ai � R+ ∩ εZ( ), where ε is the minimum bid
increment). In that setting, bi � b+i+1 can be thought of as i bidding the
lowest feasible bid higher than bi+1, that is, bi � bi+1 + ε. All our results
would hold in such a discrete model once the equilibrium bids in the
theorems are interpreted as the limit of the equilibria in the discrete
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model, letting ε → 0 (the notation b+i+1 is thus reminiscent of this al-
ternative interpretation as the right-hand limit b+i+1 :� limε+→0 bi+1 + ε( )).
15This property also ensures that SC � AC. Hence, constraint (S.1) in
Definition 1 plays no role in the result.
16This formulation of the UC constraint is consistent with our choice
to use the EOS equilibrium as the competitive benchmark as it has
become standard in the literature. The definition in (9), however, may
easily accommodate alternative benchmarks too. As explained in
Section 3, alternative models of competitive behavior could be ac-
commodated in the definition of RAE by replacing (2) with the
corresponding refinement of individual best responses. In that case,
the set E*(v′C, v−C) in (9) would consist of the fixed points of such
individual best responses, that is, theNash equilibria of theGSP taken
as a benchmark of competitive bidding. Hence, whatever refinement
of Nash equilibria is taken as a model of competitive behavior in the
GSP—and, hence, embedded in the definition of RAE—the set RUC

denotes the set of bids profile that cannot be distinguished from that
competitive benchmark.
17The reason is similar to that discussed for Theorem 1, only here it is
more complicated because, in the GSP auction, the bids of the agency
alter the bids placed by the independents.
18Because the UC-RAE induce efficient allocations, it may seem that
Theorem 3 follows immediately from the efficiency constraint being
weaker than the UC restriction. This intuition is incorrect for two
reasons. First, the UC constraint requires the existence of feigned
valuations, which can rationalize the observed bid profile but does
not require that they preserve the ranking of the true valuations.
Second, when the exogenous restrictions 5 � (RC)C∈# are changed,
they change for all coalitions: hence, even if RC is weaker for any
given C, the fact that it is also weaker for the subcoalitions may make
the stability constraint (S.2) more stringent.
19 Short of a characterization, one could consider whether there are
clear revenue rankings for the GSP’s unrestricted RAE. Meaningful
revenue comparisons, however, require normalizing the criterion to
break the agency’s indifference over the highest bid, which does not
affect the agency’s payoff (beyond the position it ensures), but does
affect the revenues. This indeterminacy does not create problems for
the preceding results because it is preserved uniformly across the
mechanisms and restrictions we consider, but when all restrictions
are lifted, the mere breaking of indifference may impact revenues
asymmetrically under different mechanisms and restrictions. Stan-
dard tie-breaking criteria, however, do enable natural revenue
comparisons. For instance, if one applied the same logic used to refine
the independents’ indifference (i.e., the locally envy-free criterion
implicit in (2)), or if one considered the lowest-revenue selections
among the bids that maximize the agency’s payoff, then it could be
shown that the GSP’s revenues in an inefficient RAE are never higher
(and typically lower) than in the Eff-RAE.
20As already mentioned, bidding cycles are indeed considered to be
one of the main reasons why the GFP auction, which was adopted in
the early days of this industry, was eventually abandoned in favor of
the GSP. (For a discussion of bidding cycles in the Overture’s GPF, see
Edelman and Ostrovsky 2007; Ottaviani 2003 provides an early as-
sessment of the transition from the GFP to the GSP.)
21Note that if the highest placed member of the lower coalition
(i.e., the bidder with a value of 2 in this example) were to slightly
increase/decrease its bid, its coalition’s payoffs would not change,
but the revenues of the other coalition would correspondingly
decrease/increase. Hence, without the assumption that top coalition
members behave as independents, a multiplicity of equilibria might
arise. Different selections from the best-response correspondence
may, thus, be used to model other forms of behavior, such as spiteful
bidding (cf. Levin and Skrzypacz 2016).

22The idea of farsightedness in coalition formation is further explored
in Ray and Vohra (1997, 2014).
23Allowing transfers would relax constraint (S.2) in the definition of
RAE and affect our results (for instance, it may induce inefficiencies
even in the VCG mechanism; cf. Example 2). That different adver-
tisers make side payments to each other seems implausible in this
market. If indirect transfers could be implemented through dynamic
effects (e.g., swapping bids for some of its members) or across dif-
ferent keywords, distinct strategic issues might arise, which would
best be studied considering a richer model.
24Varian’s (2007) upper bound symmetric NE has also a recursive
structure, and hence it could be plugged in as an alternative to the
EOS in our analysis. However, although Varian (2007) offers insights
on the type of individual logic that might support behaviors leading
to this upper bound, this logic is less compelling than the one upon
which the spite move of EOS is based. The upper bound would be
reached if everyone thinks defensively of squeezing the profit of the
player placed right above but only up to the point at which the player
above does not prefer to jump down one position. Other refinements
need not have that structure and, hence, may entail significantly
different strategy of proofs. However, aside from the experimental
results in Che et al. (2017), there is still limited understanding on the
behaviors in the GSP auction so that our preference is for the
modeling approach presented in the text.
25Moreover, costs need not be symmetric, and hence, itmay be that an
advertiser is willing to join the coalition but current members are
better off without it. Whereas the decision to abandon an agency is
unilateral, the decision to join it is not, raising further modeling
questions.
26Although an in-depth discussion of potential applications to data
are beyond the scope of this paper, we refer to Ghose and Yang (2009)
for an empirical model of the Google or Microsoft-Bing type of search
auctions and to Hsieh et al. (2018) for the case of Taobao auctions.
Neither these two papers nor others we are aware of in the literature
develop methods for estimating an empirical model of the search
auctions in the presence of collusive bidding. This type of analysis is
presented in a paper related to ours (De Carolis et al. 2018).
27Competitive bidding with quality scores has also been studied by
Athey and Nekipelov (2014), who introduced introducing uncer-
tainty over quality scores.
28The empirical analysis in DeCarolis et al. (2018) shows that even the
small two-bidder coalitions frequently observed in the data can have
large effects on revenues.
29This correspondence is always nonempty valued and multivalued
only if i is indifferent between two positions. We can ignore this case
here (for instance, assuming that such ties are always broken in favor
of the lower position) and treat πi : R

n−1+ → Π as a function (if not, πi

should be thought of as a selection from the correspondence above).
30Formally, v ∼ v′ if and only if the following two conditions hold:
(a) argmaxi∈I vi � argmaxi∈I v′i ; (b) vi � v′i for all i �� argmaxi∈I vi.
31Compared with the single agency case, the part of the proof that
parallels Theorem 1 has two complications. First, the placement of the
highest bidder of the coalition that does not have the top overall
bidder requires some additional technicality as this placement is not
only relative to independents but also relative to the other coalition’s
bidders. Second, the candidate equilibrium produced by the recur-
sion still needs to be verified because the recursive procedure does
not guarantee that a coalition’s bidders are best responding to those
bidders of the rival coalition that are placed below them. It is precisely
this verification step that yields the fundamental difference between
the cases with andwithoutmembers from different coalitions that are
adjacent in the value ranking.

Decarolis, Goldmanis, and Penta: Marketing Agencies and Collusive Bidding in Online Ad Auctions
Management Science, Articles in Advance, pp. 1–22, © 2020 INFORMS 21



References
AllouahA, Besbes O (2017) Auctions in the online display advertising

chain: A case for independent campaign management. Research
Paper No. 17-60, Columbia Business School, New York.

Ashlagi I, Monderer D, Tennenholtz M (2009) Mediators in position
auctions. Games Econom. Behav. 67(1):2–21.

Athey S, Nekipelov D (2014) A structural model of sponsored search
advertising auctions. Working paper, Stanford University,
Stanford, CA.

Aumann RJ (1959) Acceptable points in general cooperative n-person
games. Tucker A, Luce R, eds. Contributions to the Theory of Games
IV (Princeton University Press, Princeton, NJ).

Ausubel LM,MilgromP (2006) The lovely but lonely Vickrey auction.
Combinatorial Auctions (MIT Press, Cambridge, MA).

Balseiro S, CandoganO (2017) Optimal contracts for intermediaries in
online advertising. Oper. Res. 65(4):878–896.

Bernheim BD, Whinston MD (1985) Common marketing agency as a
device for facilitating collusion. RAND J. Econom. 16(2):269–281.

Bernheim BD, Whinston MD (1986) Common agency. Econometrica
54(4):923–942.

Bernheim BD, Peleg B, Whinston MD (1987) Coalition-proof Nash
equilibria I. Concepts. J. Econom. Theory 17:1–12.

Borgers T, Cox I, PesendorferM, Petricek V (2013) Equilibriumbids in
sponsored search auctions: Theory and evidence. Amer. Econom.
J. Microeconomics 5(4):163–187.

Che Y-K, Choi S, Kim J (2017) An experimental study of sponsored-
search auctions. Games Econom. Behav. 102:20–43.

Decarolis F, Goldmanis M, Penta A (2018) Common agency and
coordinated bids in sponsored search auctions. Working paper,
Bocconi University, Milan, Italy.

Despotakis S, Hafalir I, Ravi R, Sayed A (2017) Expertise in online
markets. Management Sci. 63(11):3895–3910.

Edelman B, Ostrovsky M (2007) Strategic bidder behavior in
sponsored search auctions. Decision Support Systems 43(1):
192–198.

Edelman B, Ostrovsky M, Schwarz M (2007) Internet advertising and
the generalized second-price auction: Selling billions of dollars
worth of keywords. Amer. Econom. Rev. 97(1):242–259.

Ghose A, Yang S (2009) An empirical analysis of search engine ad-
vertising: Sponsored search in electronic markets. Management
Sci. 55(10):1605–1622.

Gomes R, Sweeney K (2014) Bayes Nash equilibria of the generalized
second-price auction. Games Econom. Behav. 86:421–437.

Graham DA, Marshall RC (1987) Collusive bidder behavior at single-
object second-price and English auctions. J. Political Econom.
95(6):1217–39.

Harrington JE, Skrzypacz A (2007) Collusion under monitoring of
sales. RAND J. Econom. 38(2):314–331.

Harrington JE, Skrzypacz A (2011) Private monitoring and com-
munication in cartels: Explaining recent collusive practices.
Amer. Econom. Rev. 101(6):2425–2449.

Hendricks K, Porter R, Tan G (2008) Bidding rings and the winner’s
curse. RAND J. Econom. 39(4):1018–1041.

Hsieh Y-W, ShumM,Yang S (2018) To score or not to score? Estimates
of a sponsored search auction model. Research Paper No. 15-09,
Universty of Southern California, Los Angeles.

Kalai AT (2010) A commitment folk theorem. Games Econom. Behav.
69(1):127–137.

Levin J, Skrzypacz A (2016) Properties of the combinatorial clock
auction. Amer. Econom. Rev. 106(9):2528–2551.

Lorenzon E (2018) Collusion with a rent seeking agency in sponsored
search auctions. Working paper, Paris Dauphine University,
Paris.

Mailath GJ, Zemsky P (1991) Collusion in second price auctions with
heterogeneous bidders. Games Econom. Behav. 3(4):467–486.

Mansour Y, Muthukrishnan S, Nisan N (2012) Doubleclick ad ex-
change auction. Preprint, submitted April 2, http://arxiv.org/
abs/1204.0535.

McAfee R, McMillan J (1992) Bidding rings. Amer. Econom. Rev. 82(3):
579–599.

McAfee RP (2011) The design of advertising exchanges. Rev. Indust.
Organ. 39(3):169–185.

Metz C (2015) Facebook doesn’t make asmuchmoney as it could—on
purpose. Wired (September 21), https://www.wired.com/2015/
09/facebook-doesnt-make-much-money-couldon-purpose.

Monderer D, Tennenholtz M (2009) Strong mediated equilibrium.
Artificial Intelligence 173(1):180–195.

Ortner J, Chassang S (2018) Making corruption harder: Asymmetric
information, collusion, and crime. J. Political Econom. 126(5):
2108–2133.

Ottaviani M (2003) Overture and Google: Internet pay-per-click
(PPC) advertising auctions. Case Study-03-022, London Busi-
ness School, London.

PwC (2017) Global entertainment media outlook. Accessed Sep-
tember 13, 2018, https://www.pwc.com/gx/en/industries/tmt/
media/outlook.html.

Ray D, Vohra R (1997) Equilibrium binding agreements. J. Econom.
Theory 73(1):30–78.

Ray D, Vohra R (2014) The farsighted stable set. Econometrica 83(3):
977–1011.

Roth B, Shorrer RI (2018) Making it safe to use centralized market-
places: Dominant individual rationality and applications to
market design. Working paper, Harvard Business School,
Boston.

Varian H (2007) Position auctions. Internat. J. Indust. Organ. 25(6):
1163–1178.

Decarolis, Goldmanis, and Penta: Marketing Agencies and Collusive Bidding in Online Ad Auctions
22 Management Science, Articles in Advance, pp. 1–22, © 2020 INFORMS

http://arxiv.org/abs/1204.0535
http://arxiv.org/abs/1204.0535
https://www.wired.com/2015/09/facebook-doesnt-make-much-money-couldon-purpose
https://www.wired.com/2015/09/facebook-doesnt-make-much-money-couldon-purpose
https://www.pwc.com/gx/en/industries/tmt/media/outlook.html
https://www.pwc.com/gx/en/industries/tmt/media/outlook.html

	Marketing Agencies and Collusive Bidding in Online Ad Auctions
	Introduction
	Competitive Bidding in Online Ad Auctions
	A Model of Agency Bidding
	Agency Bidding in VCG and GSP: Results
	Discussion: Related Literature and Extensions
	Conclusions


